On pointwise error estimates for Voronoi-based finite volume methods for the Poisson equation on the sphere

被引:0
作者
Poveda, Leonardo A. A. [1 ]
Peixoto, Pedro [2 ]
机构
[1] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
[2] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Laplace-Beltrami operator; Poisson equation; Spherical icosahedral grids; Finite volume method; a priori error estimates; Pointwise estimates; Uniform error estimates; SHALLOW-WATER EQUATIONS; BAROTROPIC VORTICITY EQUATION; MAXIMUM-NORM STABILITY; ELEMENT-METHOD; NUMERICAL-INTEGRATION; ELLIPTIC PROBLEMS; SUPERCONVERGENCE; SURFACE; MESHES; DISCRETIZATION;
D O I
10.1007/s10444-023-10041-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give pointwise estimates of a Voronoi-based finite volume approximation of the Laplace-Beltrami operator on Voronoi-Delaunay decompositions of the sphere. These estimates are the basis for local error analysis, in the maximum norm, of the approximate solution of the Poisson equation and its gradient. Here, we consider the Voronoi-based finite volume method as a perturbation of the finite element method. Finally, using regularized Green's functions, we derive quasi-optimal convergence order in the maximum-norm with minimal regularity requirements. Numerical examples show that the convergence is at least as good as predicted.
引用
收藏
页数:37
相关论文
共 62 条
[21]   Finite element methods for surface PDEs [J].
Dziuk, Gerhard ;
Elliott, Charles M. .
ACTA NUMERICA, 2013, 22 :289-396
[22]   On the accuracy of the finite volume element method based on piecewise linear polynomials [J].
Ewing, RE ;
Lin, T ;
Lin, YP .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (06) :1865-1888
[23]   A cell-centred finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension [J].
Eymard, R ;
Gallouët, T ;
Herbin, R .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2006, 26 (02) :326-353
[24]   Finite volume approximation of elliptic problems and convergence of an approximate gradient [J].
Eymard, R ;
Gallouët, T ;
Herbin, R .
APPLIED NUMERICAL MATHEMATICS, 2001, 37 (1-2) :31-53
[25]   Why Do We Need Voronoi Cells and Delaunay Meshes? Essential Properties of the Voronoi Finite Volume Method [J].
Gaertner, K. ;
Kamenski, L. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2019, 59 (12) :1930-1944
[26]   Error estimates on the approximate finite volume solution of convection diffusion equations with general boundary conditions [J].
Gallouët, T ;
Herbin, E ;
Vignal, MH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (06) :1935-1972
[27]   Lagrange-Galerkin methods on spherical geodesic grids [J].
Giraldo, FX .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 136 (01) :197-213
[28]   DISCRETE SOBOLEV-POINCARE INEQUALITIES FOR VORONOI FINITE VOLUME APPROXIMATIONS [J].
Glitzky, Annegret ;
Griepentrog, Jens A. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (01) :372-391
[29]  
Hebey E., 1996, LECT NOTES MATH, V1635
[30]  
HEIKES R, 1995, MON WEATHER REV, V123, P1881, DOI 10.1175/1520-0493(1995)123<1881:NIOTSW>2.0.CO