Signal-to-Image: Rolling Bearing Fault Diagnosis Using ResNet Family Deep-Learning Models

被引:12
作者
Wu, Guoguo [1 ,2 ]
Ji, Xuerong [3 ]
Yang, Guolai [1 ]
Jia, Ye [4 ]
Cao, Chuanchuan [2 ]
机构
[1] Lanzhou Univ Technol, Coll Energy & Power Engn, Lanzhou 730050, Peoples R China
[2] Chongqing Univ Arts & Sci, Sch Intelligent Mfg Engn, Chongqing 402160, Peoples R China
[3] Newcastle Univ, Sch Engn, Newcastle Upon Tyne NE1 7RU, England
[4] Hong Kong Polytech Univ, Dept Comp, Hong Kong 999077, Peoples R China
关键词
rolling bearing; fault diagnosis; deep learning; continuous wavelet transform; CONVOLUTIONAL NEURAL-NETWORK; ELEMENT BEARINGS;
D O I
10.3390/pr11051527
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Rolling element bearings (REBs) are the most frequent cause of machine breakdowns. Traditional methods for fault diagnosis in rolling bearings rely on feature extraction and signal processing techniques. However, these methods can be affected by the complexity of the underlying patterns and the need for expert knowledge during signal analysis. This paper proposes a novel signal-to-image method in which the raw signal data are transformed into 2D images using continuous wavelet transform (CWT). This transformation enhances the features extracted from the raw data, allowing for further analysis and interpretation. Transformed images of both normal and faulty rolling bearings from the Case Western Reserve University (CWRU) dataset were used with deep-learning models from the ResNet family. They can automatically learn and identify patterns in raw vibration signals after continuous wavelet transform is used, eliminating the need for manual feature extraction. To further improve the training results, squeeze-and-excitation networks (SENets) were added to improve the process. By comparing results obtained from several models, we found that SE-ResNet152 has the best performance for REB fault diagnosis.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Deep Learning based End-to-End Rolling Bearing Fault Diagnosis
    Li, Yongjie
    Qiu, Bohua
    Wei, Muheng
    Sun, Wenqiushi
    Liu, Xueliang
    [J]. 2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [22] A deep feature enhanced reinforcement learning method for rolling bearing fault diagnosis
    Wang, Ruixin
    Jiang, Hongkai
    Zhu, Ke
    Wang, Yanfeng
    Liu, Chaoqiang
    [J]. ADVANCED ENGINEERING INFORMATICS, 2022, 54
  • [23] Intelligent fault diagnosis of rolling bearing based on a deep transfer learning network
    Wu, Zhenghong
    Jiang, Hongkai
    Zhang, Sicheng
    Wang, Xin
    Shao, Haidong
    Dou, Haoxuan
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT, ICPHM, 2023, : 105 - 111
  • [24] Defect Diagnosis of Rolling Element Bearing using Deep Learning
    Tastimur, Canan
    Karakose, Mehmet
    Aydin, Ilhan
    Akin, Erhan
    [J]. 2018 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND DATA PROCESSING (IDAP), 2018,
  • [25] A novel deep learning framework for rolling bearing fault diagnosis enhancement using VAE-augmented CNN model
    Wang, Yu
    Li, Dexiong
    Li, Lei
    Sun, Runde
    Wang, Shuqing
    [J]. HELIYON, 2024, 10 (15)
  • [26] Fault Diagnosis of Rolling Bearings Using Deep Transfer Learning and Adaptive Weighting
    Jia F.
    Li S.
    Shen J.
    Ma J.
    Li N.
    [J]. Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2022, 56 (08): : 1 - 10
  • [27] Diagnosis of EV Gearbox Bearing Fault Using Deep Learning-Based Signal Processing
    Jeong, Kicheol
    Moon, Chulwoo
    [J]. INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2024, 25 (06) : 1273 - 1285
  • [28] Review of research on signal decomposition and fault diagnosis of rolling bearing based on vibration signal
    Li, Junning
    Luo, Wenguang
    Bai, Mengsha
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (09)
  • [29] Rolling Bearing Fault Diagnosis Using Time-Frequency Analysis and Deep Transfer Convolutional Neural Network
    Chen, Zhihao
    Cen, Jian
    Xiong, Jianbin
    [J]. IEEE ACCESS, 2020, 8 : 150248 - 150261
  • [30] FAULT DIAGNOSIS METHOD OF WIND TURBINES ROLLING BEARING BASED ON IMPROVED RESNET AND TRANSFER LEARNING
    Lei C.
    Xue L.
    Jiao M.
    Zhang H.
    Shi J.
    [J]. Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (06): : 436 - 444