Geometry of almost contact metrics as an almost *-?-Ricci-Bourguignon solitons

被引:3
|
作者
Dey, Santu [1 ]
Suh, Young Jin [2 ,3 ]
机构
[1] Bidhan Chandra Coll, Dept Math, Asansol 4, Rishra 713304, West Bengal, India
[2] Kyungpook Natl Univ, Dept Math, Daegu 41566, South Korea
[3] Kyungpook Natl Univ, RIRCM, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
(?,?)-almost Kenmotsu manifold; (?,?)'-almost Kenmotsu manifold; *-?-Ricci-Bourguignon soliton; ETA-RICCI; REAL HYPERSURFACES; 3-MANIFOLDS;
D O I
10.1142/S0129055X23500125
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we give some characterizations by considering almost *-?-Ricci-Bourguignon soliton as a Kenmotsu metric. It is shown that if a Kenmotsu metric endows a *-?-Ricci-Bourguignon soliton, then the curvature tensor R with the soliton vector field V is given by the expression (Script capital LVR)(V-1,?)? = 2??{V1(r)? - V-1(Dr) + ?(Dr) - ?(r)? - Dr}. Next, we show that if an almost Kenmotsu manifold such that ? belongs to (?,-2)'-nullity distribution where ? < -1 acknowledges a *-?-Ricci-Bourguignon soliton satisfying O + ????[(r + 4n(2)) + {?(?(r)) - ?(Dr)}], then the manifold is Ricci-flat and is locally isometric to Hn+1(-4) x R-n. Moreover if the metric admits a gradient almost *-?-Ricci-Bourguignon soliton and ? leaves the scalar curvature r invariant on a Kenmotsu manifold, then the manifold is an ?-Einstein. Also, if a Kenmotsu metric represents an almost *-?-Ricci-Bourguignon soliton with potential vector field V is pointwise collinear with ?, then the manifold is an ?-Einstein.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Addendum To: Almost Ricci solitons and K-contact geometry
    Ramesh Sharma
    Journal of Geometry, 2022, 113
  • [42] Geometry of conformal η-Ricci solitons and conformal η-Ricci almost solitons on paracontact geometry
    Li, Yanlin
    Dey, Santu
    Pahan, Sampa
    Ali, Akram
    OPEN MATHEMATICS, 2022, 20 (01): : 574 - 589
  • [43] On sequential warped product η-Ricci-Bourguignon solitons
    Traore, Moctar
    Tastan, Hakan Mete
    FILOMAT, 2024, 38 (19) : 6785 - 6797
  • [44] Almost Cosymplectic (k, μ)-metrics as η-Ricci Solitons
    Wang, Wenjie
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2022, 29 (01) : 58 - 72
  • [45] Complete shrinking Ricci-Bourguignon harmonic solitons
    Azami, Shahroud
    Pirhadi, Vahid
    Fasihi-Ramandi, Ghodratallah
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2022, 33 (06)
  • [46] ALMOST KENMOTSU (k, μ)'-METRICS AS η-RICCI SOLITONS
    Wang, Wenjie
    HOUSTON JOURNAL OF MATHEMATICS, 2022, 48 (01): : 77 - 89
  • [47] Characterizations of Ricci–Bourguignon Almost Solitons on Pseudo-Riemannian Manifolds
    Dhriti Sundar Patra
    Akram Ali
    Fatemah Mofarreh
    Mediterranean Journal of Mathematics, 2022, 19
  • [48] A note on the triviality of gradient solitons of the Ricci-Bourguignon flow
    Cunha, Antonio W.
    Silva, Antonio N., Jr.
    De Lima, Eudes L.
    De Lima, Henrique F.
    ARCHIV DER MATHEMATIK, 2023, 120 (01) : 89 - 98
  • [49] Certain results of Κ-almost gradient Ricci-Bourguignon soliton on pseudo-Riemannian manifolds
    Dey, Santu
    JOURNAL OF GEOMETRY AND PHYSICS, 2023, 184
  • [50] Ricci-Bourguignon Solitons on Sequential Warped Product Manifolds
    Kaya, Dilek Acikgoz
    Ozguir, Cihan
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2024, 20 (02) : 205 - 220