Geometry of almost contact metrics as an almost *-?-Ricci-Bourguignon solitons

被引:3
|
作者
Dey, Santu [1 ]
Suh, Young Jin [2 ,3 ]
机构
[1] Bidhan Chandra Coll, Dept Math, Asansol 4, Rishra 713304, West Bengal, India
[2] Kyungpook Natl Univ, Dept Math, Daegu 41566, South Korea
[3] Kyungpook Natl Univ, RIRCM, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
(?,?)-almost Kenmotsu manifold; (?,?)'-almost Kenmotsu manifold; *-?-Ricci-Bourguignon soliton; ETA-RICCI; REAL HYPERSURFACES; 3-MANIFOLDS;
D O I
10.1142/S0129055X23500125
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we give some characterizations by considering almost *-?-Ricci-Bourguignon soliton as a Kenmotsu metric. It is shown that if a Kenmotsu metric endows a *-?-Ricci-Bourguignon soliton, then the curvature tensor R with the soliton vector field V is given by the expression (Script capital LVR)(V-1,?)? = 2??{V1(r)? - V-1(Dr) + ?(Dr) - ?(r)? - Dr}. Next, we show that if an almost Kenmotsu manifold such that ? belongs to (?,-2)'-nullity distribution where ? < -1 acknowledges a *-?-Ricci-Bourguignon soliton satisfying O + ????[(r + 4n(2)) + {?(?(r)) - ?(Dr)}], then the manifold is Ricci-flat and is locally isometric to Hn+1(-4) x R-n. Moreover if the metric admits a gradient almost *-?-Ricci-Bourguignon soliton and ? leaves the scalar curvature r invariant on a Kenmotsu manifold, then the manifold is an ?-Einstein. Also, if a Kenmotsu metric represents an almost *-?-Ricci-Bourguignon soliton with potential vector field V is pointwise collinear with ?, then the manifold is an ?-Einstein.
引用
收藏
页数:20
相关论文
共 50 条