Geometry of almost contact metrics as an almost *-?-Ricci-Bourguignon solitons

被引:3
|
作者
Dey, Santu [1 ]
Suh, Young Jin [2 ,3 ]
机构
[1] Bidhan Chandra Coll, Dept Math, Asansol 4, Rishra 713304, West Bengal, India
[2] Kyungpook Natl Univ, Dept Math, Daegu 41566, South Korea
[3] Kyungpook Natl Univ, RIRCM, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
(?,?)-almost Kenmotsu manifold; (?,?)'-almost Kenmotsu manifold; *-?-Ricci-Bourguignon soliton; ETA-RICCI; REAL HYPERSURFACES; 3-MANIFOLDS;
D O I
10.1142/S0129055X23500125
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we give some characterizations by considering almost *-?-Ricci-Bourguignon soliton as a Kenmotsu metric. It is shown that if a Kenmotsu metric endows a *-?-Ricci-Bourguignon soliton, then the curvature tensor R with the soliton vector field V is given by the expression (Script capital LVR)(V-1,?)? = 2??{V1(r)? - V-1(Dr) + ?(Dr) - ?(r)? - Dr}. Next, we show that if an almost Kenmotsu manifold such that ? belongs to (?,-2)'-nullity distribution where ? < -1 acknowledges a *-?-Ricci-Bourguignon soliton satisfying O + ????[(r + 4n(2)) + {?(?(r)) - ?(Dr)}], then the manifold is Ricci-flat and is locally isometric to Hn+1(-4) x R-n. Moreover if the metric admits a gradient almost *-?-Ricci-Bourguignon soliton and ? leaves the scalar curvature r invariant on a Kenmotsu manifold, then the manifold is an ?-Einstein. Also, if a Kenmotsu metric represents an almost *-?-Ricci-Bourguignon soliton with potential vector field V is pointwise collinear with ?, then the manifold is an ?-Einstein.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] ON ALMOST η-RICCI-BOURGUIGNON SOLITONS
    Traore, Moctar
    Tastan, Hakan Mete
    Aydin, Sibel Gerdan
    MISKOLC MATHEMATICAL NOTES, 2024, 25 (01) : 493 - 508
  • [2] REMARKS ON SUBMANIFOLDS AS ALMOST η-RICCI-BOURGUIGNON SOLITONS
    Blaga, Adara Monica
    Ozgur, Cihan
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2022, 37 (02): : 397 - 407
  • [3] Geometry of almost contact metrics as almost *-Ricci solitons
    Patra, Dhriti Sundar
    Mofarreh, Fatemah
    Ali, Akram
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024, 21 (05)
  • [4] Some results on almost η-Ricci-Bourguignon solitons
    Blaga, Adara M.
    Tastan, Hakan M.
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 168
  • [5] Some results on Ricci-Bourguignon solitons and almost solitons
    Dwivedi, Shubham
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2021, 64 (03): : 591 - 604
  • [6] Some results on almost *-Ricci-Bourguignon solitons
    Dwivedi, Shubham
    Patra, Dhriti Sundar
    JOURNAL OF GEOMETRY AND PHYSICS, 2022, 178
  • [7] Certain paracontact metrics satisfying gradient ρ-Ricci-Bourguignon almost solitons
    Dey, Santu
    Ali, Akram
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2025, 22 (03)
  • [8] Certain triviality results for Ricci-Bourguignon almost solitons
    Ghosh, Amalendu
    JOURNAL OF GEOMETRY AND PHYSICS, 2022, 182
  • [9] Almost Ricci-Bourguignon Solitons on Doubly Warped Product Manifolds
    Shenawy, Sameh
    Bin Turki, Nasser
    Syied, Noha
    Mantica, Carlo
    UNIVERSE, 2023, 9 (09)
  • [10] Geometric characterizations of almost Ricci-Bourguignon solitons on Kenmotsu manifolds
    Prakasha, D. G.
    Amruthalakshmi, M. R.
    Suh, Young Jin
    FILOMAT, 2024, 38 (03) : 861 - 871