Flexible syngas-biogas-hydrogen fueling spark-ignition engine behaviors with optimized fuel compositions and control parameters

被引:36
作者
Bui, Van Ga [1 ]
Bui, Thi Minh Tu [1 ]
Tran, Van Nam [1 ]
Huang, Zuohua [2 ]
Hoang, Anh Tuan [3 ]
Tarelko, Wieslaw [4 ]
Bui, Van Hung [5 ]
Pham, Xuan Mai [6 ]
Nguyen, Phuoc Quy Phong [7 ]
机构
[1] Univ Danang, Univ Sci & Technol, Da Nang, Vietnam
[2] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
[3] HUTECH Univ, Inst Engn, Ho Chi Minh City, Vietnam
[4] Gdansk Univ Technol, Fac Mech Engn & Ship Technol, Gdansk, Poland
[5] Univ Danang, Univ Technol & Educ, Da Nang, Vietnam
[6] Mien Dong Univ Technol, Thong Nhat, Vietnam
[7] Ho Chi Minh City Univ Transport, PATET Res Grp, Ho Chi Minh City, Vietnam
关键词
Hybrid renewable energy system; Biogas; Hydrogen; Combustion characteristics; Greenhouse gas emission; Flexible gaseous fuel spark-ignition; engine; POWER-GENERATION; ENERGY SYSTEM; PRODUCER GAS; EMISSION CHARACTERISTICS; LIGNOCELLULOSIC BIOMASS; DIESEL-ENGINE; PERFORMANCE; COMBUSTION; GASIFICATION; TECHNOLOGIES;
D O I
10.1016/j.ijhydene.2022.09.133
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper presents the results research on the optimal fuel compositions , the control parameters of the spark ignition engine fueled with syngas-biogas-hydrogen for the pur-pose of setting up a flexible electronic control unit for the engine working in a solar -biomass hybrid renewable energy system. In syngas-biogas-hydrogen mixture, the optimal content of hydrogen and biogas is 20% and 30%, respectively. Exceeding these thresholds, the improvement of engine performance is moderate, but the pollution emission increases strongly. The optimal advanced ignition angle is 38 degrees CA, 24 degrees CA, and 18 degrees CA for syngas, biogas, and hydrogen, respectively. With the same content of hydrogen or biogas in the mixture with syngas, the advanced ignition angle of the hydrogen-syngas blend is less than that of the syngas-biogas blend by about 4 degrees CA at the engine speed of 3000 rpm. The derating power of the engine is 30% and 23% as switching from the hydrogen and biogas fueling mode to the syngas fueling mode, respectively. However, NOx emission of the engine increase from 200 ppm (for syngas) to 2800 ppm (for biogas) and to over 6000 ppm (for hydrogen). The optimal advanced ignition angle, the optimal equivalence ratio of the syngas-biogas-hydrogen fuel mixture vary within the limits of the respective values for syngas and hydrogen. To improve the engine efficiency and reduce pollutant emissions, the loading control system of the engine should prioritize the adjustment of the fuel flow (c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:6722 / 6737
页数:16
相关论文
共 104 条
[1]   Eco-feasibility study of a distributed power generation system driven by renewable green energy sources [J].
Abbassi, Abdelkader ;
Ben Mehrez, Rached ;
Abbassi, Rabeh ;
Jerbi, Houssem ;
Saidi, Salem ;
Jemli, Mohamed .
ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2022, 44 (02) :3981-3999
[2]   A new approach to utilize Hydrogen as a safe fuel [J].
Abdel-Aal, HK ;
Sadik, M ;
Bassyouni, M ;
Shalabi, M .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2005, 30 (13-14) :1511-1514
[3]   MPC for optimal dispatch of an AC-linked hybrid PV/wind/biomass/H2 system incorporating demand response [J].
Acevedo-Arenas, Cesar Y. ;
Correcher, Antonio ;
Sanchez-Diaz, Carlos ;
Ariza, Eduardo ;
Alfonso-Solar, David ;
Vargas-Salgado, Carlos ;
Petit-Suarez, Johann F. .
ENERGY CONVERSION AND MANAGEMENT, 2019, 186 :241-257
[4]   An experimental assessment of combustion and performance characteristics of a spark ignition engine fueled with co-fermentation biogas and gasoline dual fuel [J].
Agbulut, Umit ;
Aydin, Mustafa ;
Karagoz, Mustafa ;
Deniz, Emrah ;
Ciftci, Burak .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING, 2022, 236 (04) :1330-1339
[5]   Effects of hydrogen-enriched biogas on combustion and emission of a dual-fuel diesel engine [J].
Ahmed, Salman Abdu ;
Zhou, Song ;
Tsegay, Solomon ;
Ahmad, Naseem ;
Zhu, Yuanqing .
ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) :5644-5659
[6]   A review of hydrogen usage in internal combustion engines (gasoline-Lpg-diesel) from combustion performance aspect [J].
Akal, Dincer ;
Oztuna, Semiha ;
Buyukakin, Mustafa Kemalettin .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (60) :35257-35268
[7]   Optimization of electricity and hydrogen production with hybrid renewable energy systems [J].
Akarsu, Beyhan ;
Genc, Mustafa Serdar .
FUEL, 2022, 324
[8]   Characteristics of hydrogen production from steam gasification of plant-originated lignocellulosic biomass and its prospects in Vietnam [J].
Anh Tuan Hoang ;
Huang, ZuoHua ;
Nizetic, Sandro ;
Pandey, Ashok ;
Xuan Phuong Nguyen ;
Luque, Rafael ;
Ong, Hwai Chyuan ;
Said, Zafar ;
Tri Hieu Le ;
Van Viet Pham .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (07) :4394-4425
[9]   Experimental investigation of solar energy-based water distillation using inclined metal tubes as collector and condenser [J].
Anh Tuan Hoang ;
Tri Hieu Le ;
Chitsomboon, Tawit ;
Koonsrisook, Atit .
ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2021, 47 (01) :10492-10508
[10]   Integrating renewable sources into energy system for smart city as a sagacious strategy towards clean and sustainable process [J].
Anh Tuan Hoang ;
Van Viet Pham ;
Xuan Phuong Nguyen .
JOURNAL OF CLEANER PRODUCTION, 2021, 305