Hard Disk Failure Prediction Based on Blending Ensemble Learning

被引:3
|
作者
Zhang, Mingyu [1 ]
Ge, Wenqiang [1 ]
Tang, Ruichun [1 ]
Liu, Peishun [1 ]
机构
[1] Ocean Univ China, Coll Informat Sci & Technol, Qingdao, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 05期
关键词
hard disk; failure prediction; S; M; A; R; T; ensemble learning;
D O I
10.3390/app13053288
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As the most widely used storage device today, hard disks are efficient and convenient, but the damage incurred in the event of a failure can be very significant. Therefore, early warnings before hard disk failure, allowing the stored content to be backed up and transferred in advance, can reduce many losses. In recent years, an endless stream of research on the prediction of hard disk failure prediction has emerged. The detection accuracy of various methods, from basic machine learning models, such as decision trees and random forests, to deep learning methods, such as BP neural networks and recurrent neural networks, has also been improving. In this paper, based on the idea of blending ensemble learning, a novel failure prediction method combining machine learning algorithms and neural networks is proposed on the publicly available BackBlaze hard disk datasets. The failure prediction experiment is conducted only with S.M.A.R.T., that is, the learned characteristics collected by self-monitoring analysis and reporting technology, which are internally counted during the operation of the hard disk. The experimental results show that this ensemble learning model is able to outperform other independent models in terms of evaluation criterion based on the Matthews correlation coefficient. Additionally, through the experimental results on multiple types of hard disks, an ensemble learning model with high performance on most types of hard disks is found, which solves the problem of the low robustness and generalization of traditional machine learning methods and proves the effectiveness and high universality of this method.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Railway accident prediction strategy based on ensemble learning
    Meng, Haining
    Tong, Xinyu
    Zheng, Yi
    Xie, Guo
    Ji, Wenjiang
    Hei, Xinhong
    ACCIDENT ANALYSIS AND PREVENTION, 2022, 176
  • [22] Failure Prediction of Hard Disk Drives Based on Adaptive Raox2013;Blackwellized Particle Filter Error Tracking Method
    Wang, Yu
    He, Long
    Jiang, Shan
    Chow, Tommy W. S.
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (02) : 913 - 921
  • [23] Ensemble Learning for Rainfall Prediction
    Sani N.S.
    Rahman A.H.A.
    Adam A.
    Shlash I.
    Aliff M.
    International Journal of Advanced Computer Science and Applications, 2020, 11 (11): : 153 - 162
  • [24] Ensemble Learning for Rainfall Prediction
    Sani, Nor Samsiah
    Abd Rahman, Abdul Hadi
    Adam, Afzan
    Shlash, Israa
    Aliff, Mohd
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (11) : 153 - 162
  • [25] Failure mode classification and bearing capacity prediction for reinforced concrete columns based on ensemble machine learning algorithm
    Feng, De-Cheng
    Liu, Zhen-Tao
    Wang, Xiao-Dan
    Jiang, Zhong-Ming
    Liang, Shi-Xue
    ADVANCED ENGINEERING INFORMATICS, 2020, 45
  • [26] Biogas Production Prediction Based on Feature Selection and Ensemble Learning
    Peng, Shurong
    Guo, Lijuan
    Li, Yuanshu
    Huang, Haoyu
    Peng, Jiayi
    Liu, Xiaoxu
    APPLIED SCIENCES-BASEL, 2024, 14 (02):
  • [27] Enhancing Machine Learning based QoE Prediction by Ensemble Models
    Casas, Pedro
    Seufert, Michael
    Wehner, Nikolas
    Schwind, Anika
    Wamser, Florian
    2018 IEEE 38TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS), 2018, : 1642 - 1647
  • [28] Research on telecom customer churn prediction based on ensemble learning
    Yajun Liu
    Jingjing Fan
    Jianfang Zhang
    Xinxin Yin
    Zehua Song
    Journal of Intelligent Information Systems, 2023, 60 : 759 - 775
  • [29] Protein Contact Map Prediction Based On an Ensemble Learning Method
    Habibi, Narjes Khatoon
    Saraee, Mohammad Hossein
    2009 INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND TECHNOLOGY, VOL II, PROCEEDINGS, 2009, : 205 - 209
  • [30] Remaining useful life prediction based on stacking ensemble learning
    Han, Tengfei
    Li, Yaping
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2024, 30 (07): : 2464 - 2473