Persistence of kink and anti-kink wave solutions for the perturbed double sine-Gordon equation

被引:4
|
作者
Zhang, Huiyang [1 ]
Xia, Yonghui [1 ]
机构
[1] Zhejiang Normal Univ, Sch Math Sci, Jinhua 321004, Peoples R China
基金
中国国家自然科学基金;
关键词
Sine-Gordon equation; Traveling wave solution; Melnikov function; TRAVELING-WAVES; SOLITONS; BIFURCATIONS; DIFFUSION; EXISTENCE; DYNAMICS; PERIOD;
D O I
10.1016/j.aml.2023.108616
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the geometric singular perturbation theory and the Melnikov method, we study the persistence of kink and anti-kink wave solutions for the perturbed double sine-Gordon equation. The explicit expression of the Melnikov function is given. Moreover, the monotonicity of the period function for unperturbed double sine-Gordon equation is investigated.(c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Perturbed soliton solutions of the sine-Gordon equation
    S. P. Popov
    Computational Mathematics and Mathematical Physics, 2009, 49 : 2085 - 2091
  • [22] Perturbed soliton solutions of the sine-Gordon equation
    Popov, S. P.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2009, 49 (12) : 2085 - 2091
  • [23] On Asymptotic Stability of the Sine-Gordon Kink in the Energy Space
    Alejo, Miguel A.
    Munoz, Claudio
    Palacios, Jose M.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 402 (01) : 581 - 636
  • [24] Structure and properties of four-kink multisolitons of the sine-Gordon equation
    A. M. Gumerov
    E. G. Ekomasov
    F. K. Zakir’yanov
    R. V. Kudryavtsev
    Computational Mathematics and Mathematical Physics, 2014, 54 : 491 - 504
  • [25] Existence of kink and anti-kink wave solutions for three physical models in mathematical physics
    Alsubhi, Mohammed
    AIP ADVANCES, 2025, 15 (03)
  • [26] A new look at the double sine-Gordon kink-antikink scattering
    Belendryasova, E.
    Gani, V. A.
    Marjaneh, A. Moradi
    Saadatmand, D.
    Askari, A.
    VII INTERNATIONAL CONFERENCE PROBLEMS OF MATHEMATICAL PHYSICS AND MATHEMATICAL MODELLING, 2019, 1205
  • [27] A note on "New kink-shaped solutions and periodic wave solutions for the (2+1)-dimensional Sine-Gordon equation"
    Kudryashov, Nikolay A.
    Ryabov, Pavel N.
    Sinelshchikov, Dmitry I.
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (08) : 2479 - 2481
  • [28] Dynamics of kink train solutions in deformed multiple Sine-Gordon models
    Peyravi, Marzieh
    Riazi, Nematollah
    Javidan, Kurosh
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (01):
  • [29] Kink dynamics of the sine-Gordon equation in a model with three identical attracting or repulsive impurities
    Ekomasov, E. G.
    Kudryavtsev, R. V.
    Samsonov, K. Yu.
    Nazarov, V. N.
    Kabanov, D. K.
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY-PRIKLADNAYA NELINEYNAYA DINAMIKA, 2023, 31 (06): : 693 - 709
  • [30] On existence of kink and antikink wave solutions of singularly perturbed Gardner equation
    Wen, Zhenshu
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (07) : 4422 - 4427