Apelin-13 prevents the effects of oxygen-glucose deprivation/reperfusion on bEnd.3 cells by inhibiting AKT-mTOR signaling

被引:2
|
作者
Zhang, Rumin [1 ]
Wu, Fei [1 ]
Cheng, Baohua [1 ]
Wang, Chunmei [1 ]
Bai, Bo [1 ]
Chen, Jing [1 ,2 ]
机构
[1] Jining Med Univ, Neurobiol Key Lab, Jining 272067, Peoples R China
[2] Univ Warwick, Warwick Med Sch, Div Biomed Sci, Coventry CV4 7AL, England
基金
中国国家自然科学基金;
关键词
Apelin-13; autophagy; blood-brain barrier; pathway; cell migration; ischemia; reperfusion (I; R) injury; BLOOD-BRAIN-BARRIER; OGD/R-INDUCED INJURY; REPERFUSION INJURY; CEREBRAL-ISCHEMIA; PC12; CELLS; AUTOPHAGY; PROTECTS; APOPTOSIS; NEURONS; STROKE;
D O I
10.1177/15353702221139186
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Autophagy plays works by degrading misfolded proteins and dysfunctional organelles and maintains intracellular homeostasis. Apelin-13 has been investigated as an agent that might protect the blood-brain barrier (BBB) from cerebral ischemia/reperfusion (I/R) injury. In this study, we examined whether apelin-13 protects cerebral microvascular endothelial cells, important components of the BBB, from I/R injury by regulating autophagy. To mimic I/R injury, the mouse cerebral microvascular endothelia l cell line bEnd 3 undergoes the process of oxygen and glucose deprivation and re feeding in the process of culture. Cell viability was detected using a commercial kit, and cell migration was monitored by in vitro scratch assay. The tight junction (TJ) proteins ZO-1 and occludin; the autophagy markers LC3 II, beclin 1, and p62; and components of the AKT-mTOR signaling pathway were detected by Western blotting and immunofluorescence. To confirm the role of autophagy in OGD/R and the protective effect of apelin-13, we treated the cells with 3-methyladenine (3-MA), a pharmacological inhibitor of autophagy. Our results demonstrated that OGD/R increased autophagic activity but decreased viability, abundance of TJs, and migration. Viability and TJ abundance were further reduced when the OGD/R group was treated with 3-MA. These results indicated that bEnd.3 upregulates autophagy to ameliorate the effects of OGD/R injury on viability and TJs, but that the autophagy induced by OGD/R alone is not sufficient to protect against the effect on cell migration. Treatment of OGD/R samples with apelin-13 markedly increased viability, TJ abundance, and migration, as well as autophagic activity, whereas 3-MA inhibited this increase, suggesting that apelin-13 exerted its protective effects by upregulating autophagy.
引用
收藏
页码:146 / 156
页数:11
相关论文
共 50 条
  • [41] Baicalin Attenuates Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury by Modulating the BDNF-TrkB/PI3K/Akt and MAPK/Erk1/2 Signaling Axes in Neuron-Astrocyte Cocultures
    Li, Changxiang
    Sui, Conglu
    Wang, Wei
    Yan, Juntang
    Deng, Nan
    Du, Xin
    Cheng, Fafeng
    Ma, Xiaona
    Wang, Xueqian
    Wang, Qingguo
    FRONTIERS IN PHARMACOLOGY, 2021, 12
  • [42] Cornin protects SH-SY5Y cells against oxygen and glucose deprivation-induced autophagy through the PI3K/Akt/mTOR pathway
    Ding, Changling
    Zhang, Jie
    Li, Baoyuan
    Ding, Zhaoxing
    Cheng, Wenna
    Gao, Fei
    Zhang, Ye
    Xu, Yangyang
    Zhang, Shuping
    MOLECULAR MEDICINE REPORTS, 2018, 17 (01) : 87 - 92
  • [43] Atorvastatin Rejuvenates Neural Stem Cells Injured by Oxygen-Glucose Deprivation and Induces Neuronal Differentiation Through Activating the PI3K/Akt and ERK Pathways
    Choi, Na-Young
    Kim, Ji Young
    Hwang, Mina
    Lee, Eun-Hye
    Choi, Hojin
    Lee, Kyu-Yong
    Lee, Young Joo
    Koh, Seong-Ho
    MOLECULAR NEUROBIOLOGY, 2019, 56 (04) : 2964 - 2977
  • [44] Protective Effects of Oroxylin A on Oxygen-Glucose Deprivation/Reperfusion-Induced PC12 Cells by Activating the Sonic Hedgehog Signal Pathway
    Gao, Yanhong
    Li, Rui
    Sun, Hua
    Li, Jianmei
    He, Bing
    Xiao, Sa
    Li, Liping
    Wang, Junling
    NATURAL PRODUCT COMMUNICATIONS, 2019, 14 (10)
  • [45] Naoxintong Protects Primary Neurons from Oxygen-Glucose Deprivation/Reoxygenation Induced Injury through PI3K-Akt Signaling Pathway
    Ma, Yan
    Zhao, Pei
    Zhu, Jinqiang
    Yan, Chen
    Li, Lin
    Zhang, Han
    Zhang, Meng
    Gao, Xiumei
    Fan, Xiang
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2016, 2016
  • [46] Effects of Bone Marrow-Derived Mesenchymal Stem Cells on the Axonal Outgrowth through Activation of PI3K/AKT Signaling in Primary Cortical Neurons Followed Oxygen-Glucose Deprivation Injury
    Liu, Yong
    Zhang, Yixian
    Lin, Longzai
    Lin, Feifei
    Li, Tin
    Du, Houwei
    Chen, Ronghua
    Zheng, Wei
    Liu, Nan
    PLOS ONE, 2013, 8 (11):
  • [47] SRPX2 attenuated oxygen-glucose deprivation and reperfusion-induced injury in cardiomyocytes via alleviating endoplasmic reticulum stress-induced apoptosis through targeting PI3K/Akt/mTOR axis
    Sun, Zhiyuan
    Gao, Xin
    OPEN LIFE SCIENCES, 2022, 17 (01): : 1497 - 1504
  • [48] miR-103a-3p alleviates oxidative stress, apoptosis, and immune disorder in oxygen-glucose deprivation-treated BV2 microglial cells and rats with cerebral ischemia-reperfusion injury by targeting high mobility group box 1
    Li, Jianshe
    He, Wenlong
    Wang, Yan
    Zhao, Jianting
    Zhao, Xinli
    ANNALS OF TRANSLATIONAL MEDICINE, 2020, 8 (20)
  • [49] Z-ligustilide protects BV-2 microglial cells against oxygen-glucose deprivation/reoxygenation-induced injury by inhibiting NLRP3 inflammasome activation and pyroptosis
    Hu, Jia
    Wei, Jie
    Zeng, Cheng
    Duan, Fengqi
    Liu, Sijun
    Tan, Hongmei
    EUROPEAN JOURNAL OF INFLAMMATION, 2020, 18
  • [50] Protective effect of TSG against oxygen-glucose deprivation in cardiomyoblast cell line H9c2: involvement of Bcl-2 family, Caspase 3/9, and Akt signaling pathway
    Xu, Haiyang
    Wang, Jinghua
    Zhang, Jingjing
    Li, Mingxian
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY, 2017, 10 (10): : 10584 - 10592