Development and external validation of a dynamic risk score for early prediction of cardiogenic shock in cardiac intensive care units using machine learning

被引:4
作者
Hu, Yuxuan [1 ]
Lui, Albert [2 ]
Goldstein, Mark [3 ]
Sudarshan, Mukund [3 ]
Tinsay, Andrea [4 ]
Tsui, Cindy [4 ]
Maidman, Samuel D. [4 ]
Medamana, John [4 ]
Jethani, Neil [2 ,3 ]
Puli, Aahlad
Nguy, Vuthy [5 ]
Aphinyanaphongs, Yindalon [5 ]
Kiefer, Nicholas [1 ]
Smilowitz, Nathaniel R. [1 ]
Horowitz, James [1 ]
Ahuja, Tania [6 ]
Fishman, Glenn, I [1 ]
Hochman, Judith [1 ]
Katz, Stuart [1 ]
Bernard, Samuel [1 ]
Ranganath, Rajesh [3 ,5 ,7 ]
机构
[1] NYU, Leon H Charney Div Cardiol, Langone Hlth, 550 1st Ave, New York, NY 10016 USA
[2] NYU, Grossman Sch Med, New York, NY USA
[3] NYU, Courant Inst Math Sci, New York, NY USA
[4] NYU, Dept Med, Langone Hlth, New York, NY USA
[5] NYU, Dept Populat Hlth, Langone Hlth, New York, NY USA
[6] NYU, Dept Pharm, Langone Hlth, New York, NY USA
[7] NYU, Ctr Data Sci, New York, NY USA
基金
美国国家科学基金会;
关键词
Heart failure; Myocardial infarction; Data science; Machine learning; Cardiac critical care; ACUTE MYOCARDIAL-INFARCTION; MANAGEMENT; CLASSIFICATION; MORTALITY; OUTCOMES;
D O I
10.1093/ehjacc/zuae037
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims Myocardial infarction and heart failure are major cardiovascular diseases that affect millions of people in the USA with morbidity and mortality being highest among patients who develop cardiogenic shock. Early recognition of cardiogenic shock allows prompt implementation of treatment measures. Our objective is to develop a new dynamic risk score, called CShock, to improve early detection of cardiogenic shock in the cardiac intensive care unit (ICU).Methods and results We developed and externally validated a deep learning-based risk stratification tool, called CShock, for patients admitted into the cardiac ICU with acute decompensated heart failure and/or myocardial infarction to predict the onset of cardiogenic shock. We prepared a cardiac ICU dataset using the Medical Information Mart for Intensive Care-III database by annotating with physician-adjudicated outcomes. This dataset which consisted of 1500 patients with 204 having cardiogenic/mixed shock was then used to train CShock. The features used to train the model for CShock included patient demographics, cardiac ICU admission diagnoses, routinely measured laboratory values and vital signs, and relevant features manually extracted from echocardiogram and left heart catheterization reports. We externally validated the risk model on the New York University (NYU) Langone Health cardiac ICU database which was also annotated with physician-adjudicated outcomes. The external validation cohort consisted of 131 patients with 25 patients experiencing cardiogenic/mixed shock. CShock achieved an area under the receiver operator characteristic curve (AUROC) of 0.821 (95% CI 0.792-0.850). CShock was externally validated in the more contemporary NYU cohort and achieved an AUROC of 0.800 (95% CI 0.717-0.884), demonstrating its generalizability in other cardiac ICUs. Having an elevated heart rate is most predictive of cardiogenic shock development based on Shapley values. The other top 10 predictors are having an admission diagnosis of myocardial infarction with ST-segment elevation, having an admission diagnosis of acute decompensated heart failure, Braden Scale, Glasgow Coma Scale, blood urea nitrogen, systolic blood pressure, serum chloride, serum sodium, and arterial blood pH.Conclusion The novel CShock score has the potential to provide automated detection and early warning for cardiogenic shock and improve the outcomes for millions of patients who suffer from myocardial infarction and heart failure. Graphical Abstract
引用
收藏
页码:472 / 480
页数:9
相关论文
共 34 条
  • [1] Predicting the development of in-hospital cardiogenic shock in patients with ST-segment elevation myocardial infarction treated by primary percutaneous coronary intervention: the ORBI risk score
    Auffret, Vincent
    Cottin, Yves
    Leurent, Guillaume
    Gilard, Martine
    Beer, Jean-Claude
    Zabalawi, Amer
    Chague, Frederic
    Filippi, Emanuelle
    Brunet, Damien
    Hacot, Jean-Philippe
    Brunel, Philippe
    Mejri, Mourad
    Lorgis, Luc
    Rouault, Gilles
    Druelles, Philippes
    Cornily, Jean-Christophe
    Didier, Romain
    Bot, Emilie
    Boulanger, Bertrand
    Coudert, Isabelle
    Loirat, Aurelie
    Bedossa, Marc
    Boulmier, Dominique
    Maza, Maud
    Le Guellec, Marielle
    Puri, Rishi
    Zeller, Marianne
    Le Breton, Herve
    [J]. EUROPEAN HEART JOURNAL, 2018, 39 (22) : 2090 - +
  • [2] SCAI clinical expert consensus statement on the classification of cardiogenic shock This document was endorsed by the American College of Cardiology (ACC), the American Heart Association (AHA), the Society of Critical Care Medicine (SCCM), and the Society of Thoracic Surgeons (STS) in April 2019
    Baran, David A.
    Grines, Cindy L.
    Bailey, Steven
    Burkhoff, Daniel
    Hall, Shelley A.
    Henry, Timothy D.
    Hollenberg, Steven M.
    Kapur, Navin K.
    O'Neill, William
    Ornato, Joseph P.
    Stelling, Kelly
    Thiele, Holger
    van Diepen, Sean
    Naidu, Srihari S.
    [J]. CATHETERIZATION AND CARDIOVASCULAR INTERVENTIONS, 2019, 94 (01) : 29 - 37
  • [3] Early risk stratification in patients with cardiogenic shock irrespective of the underlying cause - the Cardiogenic Shock Score
    Beer, Benedikt N.
    Jentzer, Jacob C.
    Weimann, Jessica
    Dabboura, Salim
    Yan, Isabell
    Sundermeyer, Jonas
    Kirchhof, Paulus
    Blankenberg, Stefan
    Schrage, Benedikt
    Westermann, Dirk
    [J]. EUROPEAN JOURNAL OF HEART FAILURE, 2022, 24 (04) : 657 - 667
  • [4] Epidemiology of Shock in Contemporary Cardiac Intensive Care Units Data From the Critical Care Cardiology Trials Network Registry
    Berg, David D.
    Bohula, Erin A.
    van Diepen, Sean
    Katz, Jason N.
    Alviar, Carlos L.
    Baird-Zars, Vivian M.
    Barnett, Christopher F.
    Barsness, Gregory W.
    Burke, James A.
    Cremer, Paul C.
    Cruz, Jennifer
    Daniels, Lori B.
    DeFilippis, Andrew P.
    Haleem, Affan
    Hollenberg, Steven M.
    Horowitz, James M.
    Keller, Norma
    Kontos, Michael C.
    Lawler, Patrick R.
    Menon, Venu
    Metkus, Thomas S.
    Ng, Jason
    Orgel, Ryan
    Overgaard, Christopher B.
    Park, Jeong-Gun
    Phreaner, Nicholas
    Roswell, Robert O.
    Schulman, Steven P.
    Snell, R. Jeffrey
    Solomon, Michael A.
    Ternus, Bradley
    Tymchak, Wayne
    Vikram, Fnu
    Morrow, David A.
    [J]. CIRCULATION-CARDIOVASCULAR QUALITY AND OUTCOMES, 2019, 12 (03):
  • [5] THE BRADEN SCALE FOR PREDICTING PRESSURE SORE RISK
    BERGSTROM, N
    BRADEN, BJ
    LAGUZZA, A
    HOLMAN, V
    [J]. NURSING RESEARCH, 1987, 36 (04) : 205 - 210
  • [6] Brown TB, 2020, ADV NEUR IN, V33
  • [7] Early Prediction of Cardiogenic Shock Using Machine Learning
    Chang, Yale
    Antonescu, Corneliu
    Ravindranath, Shreyas
    Dong, Junzi
    Lu, Mingyu
    Vicario, Francesco
    Wondrely, Lisa
    Thompson, Pam
    Swearingen, Dennis
    Acharya, Deepak
    [J]. FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
  • [8] Epidemiology, pathophysiology and contemporary management of cardiogenic shock - a position statement from the Heart Failure Association of the European Society of Cardiology
    Chioncel, Ovidiu
    Parissis, John
    Mebazaa, Alexandre
    Thiele, Holger
    Desch, Steffen
    Bauersachs, Johann
    Harjola, Veli-Pekka
    Antohi, Elena-Laura
    Arrigo, Mattia
    Gal, Tuvia B.
    Celutkiene, Jelena
    Collins, Sean P.
    DeBacker, Daniel
    Iliescu, Vlad A.
    Jankowska, Ewa
    Jaarsma, Tiny
    Keramida, Kalliopi
    Lainscak, Mitja
    Lund, Lars H.
    Lyon, Alexander R.
    Masip, Josep
    Metra, Marco
    Miro, Oscar
    Mortara, Andrea
    Mueller, Christian
    Mullens, Wilfried
    Nikolaou, Maria
    Piepoli, Massimo
    Price, Susana
    Rosano, Giuseppe
    Vieillard-Baron, Antoine
    Weinstein, Jean M.
    Anker, Stefan D.
    Filippatos, Gerasimos
    Ruschitzka, Frank
    Coats, Andrew J. S.
    Seferovic, Petar
    [J]. EUROPEAN JOURNAL OF HEART FAILURE, 2020, 22 (08) : 1315 - 1341
  • [9] Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.1016/j.jclinepi.2014.11.010, 10.7326/M14-0697, 10.1186/s12916-014-0241-z, 10.1002/bjs.9736, 10.7326/M14-0698, 10.1038/bjc.2014.639, 10.1016/j.eururo.2014.11.025, 10.1136/bmj.g7594]
  • [10] Covert IC, 2021, J MACH LEARN RES, V22