Mechanism of action of microRNA166 on nitric oxide in alfalfa (Medicago sativa L.) under drought stress

被引:1
作者
Wei, Bochuang [1 ,2 ]
Wang, Yizhen [1 ,2 ]
Ruan, Qian [1 ,2 ]
Zhu, Xiaolin [1 ,2 ,3 ]
Wang, Xian [1 ,2 ]
Wang, Tianjie [1 ,2 ]
Zhao, Ying [1 ,2 ]
Wei, Xiaohong [1 ,2 ,3 ]
机构
[1] Gansu Agr Univ, Coll Life Sci & Technol, Lanzhou 730070, Peoples R China
[2] Gansu Agr Univ, Gansu Prov Key Lab Aridland Crop Sci, Lanzhou 730070, Peoples R China
[3] Gansu Agr Univ, Coll Agron, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
MIR166; Alfalfa; Drought; ANTIOXIDANT ENZYMES; ROOT-GROWTH; EXPRESSION; TOLERANCE; SEEDLINGS; DIVERSIFICATION; EMBRYOGENESIS; TRANSCRIPTS; PROTEIN; NO;
D O I
10.1186/s12864-024-10095-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background Alfalfa is a perennial forage crop of high importance, but its cultivation is often affected by drought stress. Currently, the investigation of drought-related small RNAs is a popular research topic to uncover plant drought resistance mechanisms. Among these small RNAs, microRNA166 (miR166) is associated with drought in numerous plant species. Initial small RNA sequencing studies have shown that miR166 is highly responsive to exogenous nitric oxide (NO) and drought. Therefore, analyzing the expression of Msa-miR166 under nitric oxide and drought treatment is significant. Result Bioinformatics analysis revealed that the miR166 family is widely distributed among plants, ranging from mosses to eudicots, with significant distribution differences between species. The evolutionary degree of Msa-miR166s is highly similar to that of Barrel medic (Medicago truncatula) and Soybean (Glycine max), but significantly different from the model plant Arabidopsis (Arabidopsis thaliana). It is suggested that there are no significant differences in miR166s within the species, and members of Msa-miR166s can form a typical stem-loop. The lowest level of exogenous nitric oxide was observed in Msa-miR166s under drought stress, followed by individual drought, and the highest level was observed after removing endogenous nitric oxide. Conclusion In response to short-term drought, Msa-miR166s down-regulate expression in alfalfa (Medicago sativa L.). Exogenous nitric oxide can reduce the expression of Msa-miR166s in response to short-term drought. These findings suggest that Msa-miR166e-5p is responsive to environmental changes. The expression levels of target genes showed an opposite trend to Msa-miR166s, verifying the accuracy of Degradome sequencing in the early stage. This suggests that alfalfa experiences drought stress when regulated by exogenous nitric oxide, targeting HD ZIP-III, FRI, and CoA ligase genes. Additionally, the expression of Msa-miR166s in response to drought stress varies between leaves and roots, indicating spatiotemporal specificity.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.)
    Aranjuelo, Iker
    Molero, Gemma
    Erice, Gorka
    Christophe Avice, Jean
    Nogues, Salvador
    JOURNAL OF EXPERIMENTAL BOTANY, 2011, 62 (01) : 111 - 123
  • [43] Research on drought stress in Medicago sativa L. from 1998 to 2023: a bibliometric analysis
    Zhou, Zijun
    Li, Junqin
    Gao, Yang
    Wang, Xiangtao
    Wang, Rui
    Huang, Haiyan
    Zhang, Yu
    Zhao, Lili
    Wang, Puchang
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [44] PHYSICOCHEMICAL RESPONSE OF ALFALFA (MEDICAGO SATIVA L.) AND RYE GRASS (LOLIUM PERENNE L.) GENOTYPES TO INDUCE DROUGHT STRESS AT SEEDLING STAGE
    Majeed, Y.
    Rasheed, A.
    Awan, S. I.
    Xu, Z. J.
    Javed, S. O.
    Gillani, S. F. A.
    Wu, Z. M.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2023, 21 (04): : 3335 - 3348
  • [45] Silicon Priming Created an Enhanced Tolerance in Alfalfa (Medicago sativa L.) Seedlings in Response to High Alkaline Stress
    Liu, Duo
    Liu, Miao
    Liu, Xiao-Long
    Cheng, Xian-Guo
    Liang, Zheng-Wei
    FRONTIERS IN PLANT SCIENCE, 2018, 9
  • [46] Metabolomic Analysis of Key Metabolites and Their Pathways Revealed the Response of Alfalfa (Medicago sativa L.) Root Exudates to rac-GR24 under Drought Stress
    Yang, Yuwei
    Gu, Mingzhou
    Lu, Junfeng
    Li, Xin'e
    Liu, Dalin
    Wang, Lin
    PLANTS-BASEL, 2023, 12 (05):
  • [47] Insights into the Impact of Trans-Zeatin Overproduction-Engineered Sinorhizobium meliloti on Alfalfa (Medicago sativa L.) Tolerance to Drought Stress
    Yu, Wenzhe
    Luo, Li
    Qi, Xiangyu
    Cao, Yuman
    An, Jie
    Xie, Zhiguo
    Hu, Tianming
    Yang, Peizhi
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2024, 72 (15) : 8650 - 8663
  • [48] Proteomic Analysis of Alfalfa (Medicago sativa L.) Roots in Response to Rhizobium Nodulation and Salt Stress
    Wang, Yafang
    Zhang, Pan
    Li, Le
    Li, Danning
    Liang, Zheng
    Cao, Yuman
    Hu, Tianming
    Yang, Peizhi
    GENES, 2022, 13 (11)
  • [49] Exogenous salicylic acid ameliorates heat stress-induced damages and improves growth and photosynthetic efficiency in alfalfa (Medicago sativa L.)
    Wassie, Misganaw
    Zhang, Weihong
    Zhang, Qiang
    Ji, Kang
    Cao, Liwen
    Chen, Liang
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2020, 191
  • [50] Pan-transcriptome identifying master genes and regulation network in response to drought and salt stresses in Alfalfa (Medicago sativa L.)
    Medina, Cesar Augusto
    Samac, Deborah A.
    Yu, Long-Xi
    SCIENTIFIC REPORTS, 2021, 11 (01)