Mechanism of action of microRNA166 on nitric oxide in alfalfa (Medicago sativa L.) under drought stress

被引:1
|
作者
Wei, Bochuang [1 ,2 ]
Wang, Yizhen [1 ,2 ]
Ruan, Qian [1 ,2 ]
Zhu, Xiaolin [1 ,2 ,3 ]
Wang, Xian [1 ,2 ]
Wang, Tianjie [1 ,2 ]
Zhao, Ying [1 ,2 ]
Wei, Xiaohong [1 ,2 ,3 ]
机构
[1] Gansu Agr Univ, Coll Life Sci & Technol, Lanzhou 730070, Peoples R China
[2] Gansu Agr Univ, Gansu Prov Key Lab Aridland Crop Sci, Lanzhou 730070, Peoples R China
[3] Gansu Agr Univ, Coll Agron, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
MIR166; Alfalfa; Drought; ANTIOXIDANT ENZYMES; ROOT-GROWTH; EXPRESSION; TOLERANCE; SEEDLINGS; DIVERSIFICATION; EMBRYOGENESIS; TRANSCRIPTS; PROTEIN; NO;
D O I
10.1186/s12864-024-10095-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background Alfalfa is a perennial forage crop of high importance, but its cultivation is often affected by drought stress. Currently, the investigation of drought-related small RNAs is a popular research topic to uncover plant drought resistance mechanisms. Among these small RNAs, microRNA166 (miR166) is associated with drought in numerous plant species. Initial small RNA sequencing studies have shown that miR166 is highly responsive to exogenous nitric oxide (NO) and drought. Therefore, analyzing the expression of Msa-miR166 under nitric oxide and drought treatment is significant. Result Bioinformatics analysis revealed that the miR166 family is widely distributed among plants, ranging from mosses to eudicots, with significant distribution differences between species. The evolutionary degree of Msa-miR166s is highly similar to that of Barrel medic (Medicago truncatula) and Soybean (Glycine max), but significantly different from the model plant Arabidopsis (Arabidopsis thaliana). It is suggested that there are no significant differences in miR166s within the species, and members of Msa-miR166s can form a typical stem-loop. The lowest level of exogenous nitric oxide was observed in Msa-miR166s under drought stress, followed by individual drought, and the highest level was observed after removing endogenous nitric oxide. Conclusion In response to short-term drought, Msa-miR166s down-regulate expression in alfalfa (Medicago sativa L.). Exogenous nitric oxide can reduce the expression of Msa-miR166s in response to short-term drought. These findings suggest that Msa-miR166e-5p is responsive to environmental changes. The expression levels of target genes showed an opposite trend to Msa-miR166s, verifying the accuracy of Degradome sequencing in the early stage. This suggests that alfalfa experiences drought stress when regulated by exogenous nitric oxide, targeting HD ZIP-III, FRI, and CoA ligase genes. Additionally, the expression of Msa-miR166s in response to drought stress varies between leaves and roots, indicating spatiotemporal specificity.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Effects of Bacillus amyloliquefaciens QST713 on Photosynthesis and Antioxidant Characteristics of Alfalfa (Medicago sativa L.) under Drought Stress
    Han, Lingjuan
    Zhang, Miaoling
    Du, Lixia
    Zhang, Li
    Li, Bin
    AGRONOMY-BASEL, 2022, 12 (09):
  • [22] Assessing the drought tolerance variability in Mediterranean alfalfa (Medicago sativa L.) genotypes under arid conditions
    Benabderrahim, M. A.
    Hamza, H.
    Haddad, M.
    Ferchichi, A.
    PLANT BIOSYSTEMS, 2015, 149 (02): : 395 - 403
  • [23] Effects of Bacillus amyloliquefaciens QST713 on Mineral Nutrient Utilization of Alfalfa (Medicago sativa L.) under Drought Stress
    Han, Lingjuan
    Hu, Lele
    Lv, Yuanyuan
    Li, Yixuan
    Ma, Zheng
    Li, Bin
    Gao, Peng
    Liang, Yinping
    Zhao, Xiang
    AGRONOMY-BASEL, 2024, 14 (08):
  • [24] Morphological and biochemical response to osmotic stress in alfalfa (Medicago sativa L.)
    Safarnejad, A.
    PAKISTAN JOURNAL OF BOTANY, 2008, 40 (02) : 735 - 746
  • [25] Evaluation of Alfalfa (Medicago sativa L.) Populations' Response to Salinity Stress
    Cornacchione, Monica V.
    Suarez, Donald L.
    CROP SCIENCE, 2017, 57 (01) : 137 - 150
  • [26] Response and intraspecific differences in nitrogen metabolism of alfalfa (Medicago sativa L.) under cadmium stress
    Yang, Shu
    Zu, Yanqun
    Li, Bo
    Bi, Yufen
    Jia, Le
    He, Yongmei
    Li, Yuan
    CHEMOSPHERE, 2019, 220 : 69 - 76
  • [27] Mitigation of drought stress effects on alfalfa (Medicago sativa L.) callus through CaO nanoparticles and graphene oxide in tissue culture conditions
    Yazicilar, Buesra
    Nadaroglu, Hayrunnisa
    Alayli, Azize
    Nadar, Muthukumar
    Gedikli, Semin
    Bezirganoglu, Ismail
    PLANT CELL TISSUE AND ORGAN CULTURE, 2024, 157 (03)
  • [28] Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.)
    Aranjuelo, Iker
    Molero, Gemma
    Erice, Gorka
    Christophe Avice, Jean
    Nogues, Salvador
    JOURNAL OF EXPERIMENTAL BOTANY, 2011, 62 (01) : 111 - 123
  • [29] Application of biochemical markers for the assessment of drought tolerance in alfalfa (Medicago sativa L.) cultivars
    Maghsoodi, Malek
    Razmjoo, Jamshid
    Gheysari, Mahdi
    GRASSLAND SCIENCE, 2017, 63 (01) : 3 - 14
  • [30] Molecular Mechanisms of Alfalfa (Medicago sativa L.) in Response to Combined Drought and Cold Stresses
    Aili, Reziya
    Deng, Yantian
    Yang, Rui
    Zhang, Xiaopeng
    Huang, You
    Li, Heyang
    Jia, Shangang
    Yu, Longxi
    Zhang, Tiejun
    AGRONOMY-BASEL, 2023, 13 (12):