Counterdiabatic optimized driving in quantum phase sensitive models

被引:8
作者
Barone, Francesco Pio [1 ,2 ]
Kiss, Oriel [1 ,3 ]
Grossi, Michele [1 ]
Vallecorsa, Sofia [1 ]
Mandarino, Antonio [4 ]
机构
[1] European Org Nucl Res CERN, CH-1211 Geneva, Switzerland
[2] Univ Padua, I-35122 Padua, Italy
[3] Univ Geneva, Dept Nucl & Particle Phys, CH-1211 Geneva, Switzerland
[4] Univ Gdansk, Int Ctr Theory Quantum Technol, Jana Bazynskiego 1A, PL-80309 Gdansk, Poland
来源
NEW JOURNAL OF PHYSICS | 2024年 / 26卷 / 03期
关键词
counterdiabatic driving; adiabatic state preparation; spin systems; quantum computing; CHAIN;
D O I
10.1088/1367-2630/ad313e
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
State preparation plays a pivotal role in numerous quantum algorithms, including quantum phase estimation. This paper extends and benchmarks counterdiabatic driving protocols across three one-dimensional spin systems characterized by phase transitions: the axial next-nearest neighbor Ising, XXZ, and Haldane-Shastry models. We perform a shallow quantum optimal control over the counterdiabatic protocols by optimizing an energy cost function. Moreover, we provide a code package for computing symbolically various adiabatic gauge potentials. This protocol consistently surpasses standard annealing schedules, often achieving performance improvements of several orders of magnitude. The axial next-nearest neighbor Ising model stands out as a notable example, where fidelities exceeding 0.5 are attainable in most cases. Furthermore, the optimized paths exhibit promising generalization capabilities to higher-dimensional systems, allowing for the extension of parameters from smaller models. Nevertheless, our investigations reveal limitations in the case of the XXZ and Haldane-Shastry models, particularly when transitioning away from the ferromagnetic phase. This suggests that finding optimal diabatic gauge potentials for specific systems remains an important research direction.
引用
收藏
页数:15
相关论文
共 64 条
[1]   Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors [J].
Abrams, DS ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1999, 83 (24) :5162-5165
[2]   The quantum technologies roadmap: a European community view [J].
Acin, Antonio ;
Bloch, Immanuel ;
Buhrman, Harry ;
Calarco, Tommaso ;
Eichler, Christopher ;
Eisert, Jens ;
Esteve, Daniel ;
Gisin, Nicolas ;
Glaser, Steffen J. ;
Jelezko, Fedor ;
Kuhr, Stefan ;
Lewenstein, Maciej ;
Riedel, Max F. ;
Schmidt, Piet O. ;
Thew, Rob ;
Wallraff, Andreas ;
Walmsley, Ian ;
Wilhelm, Frank K. .
NEW JOURNAL OF PHYSICS, 2018, 20
[3]   Adiabatic quantum computation [J].
Albash, Tameem ;
Lidar, Daniel A. .
REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
[4]  
Barone F., 2023, Colder - package for spin-systems applications of cold
[5]   Density-matrix renormalization-group study of the disorder line in the quantum axial next-nearest-neighbor Ising model [J].
Beccaria, M ;
Campostrini, M ;
Feo, A .
PHYSICAL REVIEW B, 2006, 73 (05)
[6]   Transitionless quantum driving [J].
Berry, M. V. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (36)
[7]   Drawbacks of the use of fidelity to assess quantum resources [J].
Bina, Matteo ;
Mandarino, Antonio ;
Olivares, Stefano ;
Paris, Matteo G. A. .
PHYSICAL REVIEW A, 2014, 89 (01)
[8]   Necessary condition for the quantum adiabatic approximation [J].
Boixo, S. ;
Somma, R. D. .
PHYSICAL REVIEW A, 2010, 81 (03)
[9]  
Brochu E, 2010, Arxiv, DOI [arXiv:1012.2599, DOI 10.48550/ARXIV.1012.2599, 10.48550/arxiv.1012.2599]
[10]   Reinforcement Learning in Different Phases of Quantum Control [J].
Bukov, Marin ;
Day, Alexandre G. R. ;
Sels, Dries ;
Weinberg, Phillip ;
Polkovnikov, Anatoli ;
Mehta, Pankaj .
PHYSICAL REVIEW X, 2018, 8 (03)