dsRID: in silico identification of dsRNA regions using long-read RNA-seq data

被引:3
|
作者
Yamamoto, Ryo [1 ]
Liu, Zhiheng [2 ]
Choudhury, Mudra [2 ]
Xiao, Xinshu [1 ,2 ,3 ]
机构
[1] Univ Calif Los Angeles, Bioinformat Interdept Program, 610 Charles E Young Dr,TLSB 2000E, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Integrat Biol & Physiol, 610 Charles E Young Dr,TLSB 2000E, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Mol Biol Inst, 610 Charles E Young Dr,TLSB 2000E, Los Angeles, CA 90095 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1093/bioinformatics/btad649
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Double-stranded RNAs (dsRNAs) are potent triggers of innate immune responses upon recognition by cytosolic dsRNA sensor proteins. Identification of endogenous dsRNAs helps to better understand the dsRNAome and its relevance to innate immunity related to human diseases. Results: Here, we report dsRID (double-stranded RNA identifier), a machine-learning-based method to predict dsRNA regions in silico, leveraging the power of long-read RNA-sequencing (RNA-seq) and molecular traits of dsRNAs. Using models trained with PacBio long-read RNA-seq data derived from Alzheimer's disease (AD) brain, we show that our approach is highly accurate in predicting dsRNA regions in multiple datasets. Applied to an AD cohort sequenced by the ENCODE consortium, we characterize the global dsRNA profile with potentially distinct expression patterns between AD and controls. Together, we show that dsRID provides an effective approach to capture global dsRNA profiles using long-read RNA-seq data. Availability and implementation: Software implementation of dsRID, and genomic coordinates of regions predicted by dsRID in all samples are available at the GitHub repository: https://github.com/gxiaolab/dsRID.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Systematic assessment of long-read RNA-seq methods for transcript identification and quantification
    Pardo-Palacios, Francisco J.
    Wang, Dingjie
    Reese, Fairlie
    Diekhans, Mark
    Carbonell-Sala, Silvia
    Williams, Brian
    Loveland, Jane E.
    De Maria, Maite
    Adams, Matthew S.
    Balderrama-Gutierrez, Gabriela
    Behera, Amit K.
    Gonzalez Martinez, Jose M.
    Hunt, Toby
    Lagarde, Julien
    Liang, Cindy E.
    Li, Haoran
    Meade, Marcus Jerryd
    Moraga Amador, David A.
    Prjibelski, Andrey D.
    Birol, Inanc
    Bostan, Hamed
    Brooks, Ashley M.
    Celik, Muhammed Hasan
    Chen, Ying
    Du, Mei R. M.
    Felton, Colette
    Goeke, Jonathan
    Hafezqorani, Saber
    Herwig, Ralf
    Kawaji, Hideya
    Lee, Joseph
    Li, Jian-Liang
    Lienhard, Matthias
    Mikheenko, Alla
    Mulligan, Dennis
    Nip, Ka Ming
    Pertea, Mihaela
    Ritchie, Matthew E.
    Sim, Andre D.
    Tang, Alison D.
    Wan, Yuk Kei
    Wang, Changqing
    Wong, Brandon Y.
    Yang, Chen
    Barnes, If
    Berry, Andrew E.
    Capella-Gutierrez, Salvador
    Cousineau, Alyssa
    Dhillon, Namrita
    Fernandez-Gonzalez, Jose M.
    NATURE METHODS, 2024, 21 (07) : 1349 - 1363
  • [2] Identification and quantification of transposable element transcripts using Long-Read RNA-seq in Drosophila germline tissues
    Rebollo, Rita
    Gerenton, Pierre
    Cumunel, Eric
    Mary, Arnaud
    Sabot, Francois
    Burlet, Nelly
    Gillet, Benjamin
    Hughes, Sandrine
    Oliveira, Daniel S.
    Goubert, Clement
    Fablet, Marie
    Vieira, Cristina
    Lacroix, Vincent
    PEER COMMUNITY JOURNAL, 2024, 4
  • [3] ScanExitronLR: characterization and quantification of exitron splicing events in long-read RNA-seq data
    Fry, Joshua
    Li, Yangyang
    Yang, Rendong
    BIOINFORMATICS, 2022, 38 (21) : 4966 - 4968
  • [4] Identification of cell barcodes from long-read single-cell RNA-seq with BLAZE
    You, Yupei
    Prawer, Yair D. J.
    De Paoli-Iseppi, Ricardo
    Hunt, Cameron P. J.
    Parish, Clare L.
    Shim, Heejung
    Clark, Michael B.
    GENOME BIOLOGY, 2023, 24 (01)
  • [5] Identification of cell barcodes from long-read single-cell RNA-seq with BLAZE
    Yupei You
    Yair D. J. Prawer
    Ricardo De Paoli-Iseppi
    Cameron P. J. Hunt
    Clare L. Parish
    Heejung Shim
    Michael B. Clark
    Genome Biology, 24
  • [6] DELongSeq for efficient detection of differential isoform expression from long-read RNA-seq data
    Hu, Yu
    Gouru, Anagha
    Wang, Kai
    NAR GENOMICS AND BIOINFORMATICS, 2023, 5 (01)
  • [7] Context-aware transcript quantification from long-read RNA-seq data with Bambu
    Ying Chen
    Andre Sim
    Yuk Kei Wan
    Keith Yeo
    Joseph Jing Xian Lee
    Min Hao Ling
    Michael I. Love
    Jonathan Göke
    Nature Methods, 2023, 20 : 1187 - 1195
  • [8] Context-aware transcript quantification from long-read RNA-seq data with Bambu
    Chen, Ying
    Sim, Andre
    Wan, Yuk Kei
    Yeo, Keith
    Lee, Joseph Jing Xian
    Ling, Min Hao
    Love, Michael I.
    Goke, Jonathan
    NATURE METHODS, 2023, 20 (08) : 1187 - +
  • [9] Can We Detect T Cell Receptors from Long-Read RNA-Seq Data?
    Mika, Justyna
    Candeias, Serge M.
    Badie, Christophe
    Polanska, Joanna
    BIOINFORMATICS AND BIOMEDICAL ENGINEERING, PT II, 2022, : 450 - 463
  • [10] L-GIREMI uncovers RNA editing sites in long-read RNA-seq
    Liu, Zhiheng
    Quinones-Valdez, Giovanni
    Fu, Ting
    Huang, Elaine
    Choudhury, Mudra
    Reese, Fairlie
    Mortazavi, Ali
    Xiao, Xinshu
    GENOME BIOLOGY, 2023, 24 (01)