An artificial intelligence-powered PD-L1 combined positive score (CPS) analyser in urothelial carcinoma alleviating interobserver and intersite variability

被引:3
作者
Lee, Kyu Sang [1 ]
Choi, Euno [2 ]
Cho, Soo Ick [3 ]
Park, Seonwook [3 ]
Ryu, Jeongun [3 ]
Puche, Aaron Valero [3 ]
Ma, Minuk [3 ]
Park, Jongchan [3 ]
Jung, Wonkyung [3 ]
Ro, Juneyoung [3 ]
Kim, Sukjun [3 ]
Park, Gahee [3 ]
Song, Sanghoon [3 ]
Ock, Chan-Young [3 ]
Choe, Gheeyoung [1 ]
Park, Jeong Hwan [4 ,5 ]
机构
[1] Seoul Natl Univ, Bundang Hosp, Coll Med, Dept Pathol, Seongnam Si, South Korea
[2] Ewha Womans Univ, Mokdong Hosp, Coll Med, Dept Pathol, Seoul, South Korea
[3] Seoul Natl Univ, Coll Med, SMG SNU Boramae Med Ctr, Lunit, Seoul, South Korea
[4] Seoul Natl Univ, Coll Med, SNU Boramae Med Ctr, Dept Pathol, Seoul, South Korea
[5] SMG SNU Boramae Med Ctr, Dept Pathol, Seoul, South Korea
关键词
artificial intelligence; combined positive score; deep learning; programmed death-ligand 1; urothelial carcinoma; CANCER; PEMBROLIZUMAB; IMMUNOTHERAPY; PREDICTION;
D O I
10.1111/his.15176
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Aims: Immune checkpoint inhibitors targeting programmed death-ligand 1 (PD-L1) have shown promising clinical outcomes in urothelial carcinoma (UC). The combined positive score (CPS) quantifies PD-L1 22C3 expression in UC, but it can vary between pathologists due to the consideration of both immune and tumour cell positivity. Methods and Results: An artificial intelligence (AI)-powered PD-L1 CPS analyser was developed using 1,275,907 cells and 6175.42 mm2 of tissue annotated by pathologists, extracted from 400 PD-L1 22C3-stained whole slide images of UC. We validated the AI model on 543 UC PD-L1 22C3 cases collected from three institutions. There were 446 cases (82.1%) where the CPS results (CPS >= 10 or <10) were in complete agreement between three pathologists, and 486 cases (89.5%) where the AI-powered CPS results matched the consensus of two or more pathologists. In the pathologist's assessment of the CPS, statistically significant differences were noted depending on the source hospital (P = 0.003). Three pathologists reevaluated discrepancy cases with AI-powered CPS results. After using the AI as a guide and revising, the complete agreement increased to 93.9%. The AI model contributed to improving the concordance between pathologists across various factors including hospital, specimen type, pathologic T stage, histologic subtypes, and dominant PD-L1-positive cell type. In the revised results, the evaluation discordance among slides from different hospitals was mitigated. Conclusion: This study suggests that AI models can help pathologists to reduce discrepancies between pathologists in quantifying immunohistochemistry including PD-L1 22C3 CPS, especially when evaluating data from different institutions, such as in a telepathology setting.
引用
收藏
页码:81 / 91
页数:11
相关论文
共 34 条
[1]   Artificial intelligence as the next step towards precision pathology [J].
Acs, B. ;
Rantalainen, M. ;
Hartman, J. .
JOURNAL OF INTERNAL MEDICINE, 2020, 288 (01) :62-81
[2]   Multicenter harmonization study for PD-L1 IHC testing in non-small-cell lung cancer [J].
Adam, J. ;
Le Stang, N. ;
Rouquette, I. ;
Cazes, A. ;
Badoual, C. ;
Pinot-Roussel, H. ;
Tixier, L. ;
Danel, C. ;
Damiola, F. ;
Damotte, D. ;
Penault-Llorca, F. ;
Lantuejoul, S. .
ANNALS OF ONCOLOGY, 2018, 29 (04) :953-958
[3]  
[Anonymous], 2017, AJCC cancer staging manual
[4]   First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study [J].
Balar, Arjun V. ;
Castellano, Daniel ;
O'Donnell, Peter H. ;
Grivas, Petros ;
Vuky, Jacqueline ;
Powles, Thomas ;
Plimack, Elizabeth R. ;
Hahn, Noah M. ;
de Wit, Ronald ;
Pang, Lei ;
Savage, Mary J. ;
Perini, Rodolfo F. ;
Keefe, Stephen M. ;
Bajorin, Dean ;
Bellmunt, Joaquim .
LANCET ONCOLOGY, 2017, 18 (11) :1483-1492
[5]   Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma [J].
Bellmunt, J. ;
de Wit, R. ;
Vaughn, D. J. ;
Fradet, Y. ;
Lee, J. -L. ;
Fong, L. ;
Vogelzang, N. J. ;
Climent, M. A. ;
Petrylak, D. P. ;
Choueiri, T. K. ;
Necchi, A. ;
Gerritsen, W. ;
Gurney, H. ;
Quinn, D. I. ;
Culine, S. ;
Sternberg, C. N. ;
Mai, Y. ;
Poehlein, C. H. ;
Perini, R. F. ;
Bajorin, D. F. .
NEW ENGLAND JOURNAL OF MEDICINE, 2017, 376 (11) :1015-1026
[6]   Artificial intelligence assistance significantly improves Gleason grading of prostate biopsies by pathologists [J].
Bulten, Wouter ;
Balkenhol, Maschenka ;
Belinga, Jean-Joel Awoumou ;
Brilhante, Americo ;
Cakir, Asli ;
Egevad, Lars ;
Eklund, Martin ;
Farre, Xavier ;
Geronatsiou, Katerina ;
Molinie, Vincent ;
Pereira, Guilherme ;
Roy, Paromita ;
Saile, Gunter ;
Salles, Paulo ;
Schaafsma, Ewout ;
Tschui, Joelle ;
Vos, Anne-Marie ;
van Boven, Hester ;
Vink, Robert ;
van der Laak, Jeroen ;
Hulsbergen-van der Kaa, Christina ;
Litjens, Geert .
MODERN PATHOLOGY, 2021, 34 (03) :660-671
[7]   Artificial intelligence-powered programmed death ligand 1 analyser reduces interobserver variation in tumour proportion score for non-small cell lung cancer with better prediction of immunotherapy response [J].
Choi, Sangjoon ;
Cho, Soo Ick ;
Ma, Minuk ;
Park, Seonwook ;
Pereira, Sergio ;
Aum, Brian Jaehong ;
Shin, Seunghwan ;
Paeng, Kyunghyun ;
Yoo, Donggeun ;
Jung, Wonkyung ;
Ock, Chan-Young ;
Lee, Se-Hoon ;
Choi, Yoon-La ;
Chung, Jin-Haeng ;
Mok, Tony S. ;
Kim, Hyojin ;
Kim, Seokhwi .
EUROPEAN JOURNAL OF CANCER, 2022, 170 :17-26
[8]  
Chong Thomas, 2019, J Pathol Inform, V10, P31, DOI 10.4103/jpi.jpi_22_19
[9]   Intra- and Interobserver Reproducibility Assessment of PD-L1 Biomarker in Non-Small Cell Lung Cancer [J].
Cooper, Wendy A. ;
Russell, Prudence A. ;
Cherian, Maya ;
Duhig, Edwina E. ;
Godbolt, David ;
Jessup, Peter J. ;
Khoo, Christine ;
Leslie, Connull ;
Mahar, Annabelle ;
Moffat, David F. ;
Sivasubramaniam, Vanathi ;
Faure, Celine ;
Reznichenko, Alena ;
Grattan, Amanda ;
Fox, Stephen B. .
CLINICAL CANCER RESEARCH, 2017, 23 (16) :4569-4577
[10]   PD-L1 Testing and Squamous Cell Carcinoma of the Head and Neck: A Multicenter Study on the Diagnostic Reproducibility of Different Protocols [J].
Crosta, Simona ;
Boldorini, Renzo ;
Bono, Francesca ;
Brambilla, Virginia ;
Dainese, Emanuele ;
Fusco, Nicola ;
Gianatti, Andrea ;
L'Imperio, Vincenzo ;
Morbini, Patrizia ;
Pagni, Fabio .
CANCERS, 2021, 13 (02) :1-10