Single-frame structured illumination microscopy for fast live-cell imaging

被引:5
作者
Wu, Hanmeng [1 ]
Li, Yueming [1 ]
Sun, Yile [1 ]
Yin, Lu [2 ]
Sun, Weiyun [3 ]
Ye, Zitong [1 ]
Yang, Xinxun [1 ]
Zhu, Hongfei [4 ]
Tang, Mingwei [1 ]
Han, Yubing [1 ,5 ]
Kuang, Cuifang [1 ,6 ,7 ]
Liu, Xu [1 ,6 ,7 ]
机构
[1] Zhejiang Univ, Coll Opt Sci & Engn, State Key Lab Extreme Photon & Instrumentat, Hangzhou 310027, Peoples R China
[2] China Jiliang Univ, Coll Opt & Elect Technol, Hangzhou 310018, Peoples R China
[3] Zhejiang Univ Technol, Inst Pharmacol, Coll Pharmaceut Sci, Hangzhou 310014, Peoples R China
[4] Chinese Univ Hong Kong, Dept Biomed Engn, Hong Kong, Peoples R China
[5] Huazhong Univ Sci & Technol, Britton Chance Ctr Biomed Photon, MoE Key Lab Biomed Photon, Adv Biomed Imaging Facil,Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[6] ZJU Hangzhou Global Sci & Technol Innovat Ctr, Hangzhou 311200, Peoples R China
[7] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Peoples R China
基金
中国国家自然科学基金;
关键词
FLUORESCENCE MICROSCOPY; RESOLUTION LIMIT;
D O I
10.1063/5.0180978
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Observing subcellular structural dynamics in living cells has become the goal of super-resolution (SR) fluorescence microscopy. Among typical SRM techniques, structured illumination microscopy (SIM) stands out for its fast imaging speed and low photobleaching. However, 2D-SIM requires nine raw images to obtain a SR image, leading to undesirable artifacts in the fast dynamics of live-cell imaging. In this paper, we propose a single-frame structured illumination microscopy (SF-SIM) method based on deep learning that achieves SR imaging using only a single image modulated by a hexagonal lattice pattern. The SF-SIM method used the prior knowledge to complete the structure enhancement of SR images in the spatial domain and the expansion of the Fourier spectrum through deep learning, achieving the same resolution as conventional 2D-SIM. Temporal resolution is improved nine times, and photobleaching is reduced by 2.4 times compared to conventional 2D-SIM. Based on this, we observed the fast dynamics of multiple subcellular structures and the dynamic interaction of two organelles. The SF-SIM methods provide a powerful tool for live-cell imaging.
引用
收藏
页数:9
相关论文
共 40 条
  • [31] Fluorescence nanoscopy in cell biology
    Sahl, Steffen J.
    Hell, Stefan W.
    Jakobs, Stefan
    [J]. NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2017, 18 (11) : 685 - 701
  • [32] Visualizing and discovering cellular structures with super-resolution microscopy
    Sigal, Yaron M.
    Zhou, Ruobo
    Zhuang, Xiaowei
    [J]. SCIENCE, 2018, 361 (6405) : 880 - 887
  • [33] Simonyan K, 2015, Arxiv, DOI [arXiv:1409.1556, DOI 10.48550/ARXIV.1409.1556]
  • [34] Retractosomes: small extracellular vesicles generated from broken-off retraction fibers
    Wang, Yizheng
    Gao, Shuaixin
    Liu, Yuheng
    Wang, Dongju
    Liu, Boqi
    Jiang, Dong
    Wong, Catherine C. L.
    Chen, Yang
    Yu, Li
    [J]. CELL RESEARCH, 2022, 32 (10) : 953 - 956
  • [35] High-fidelity structured illumination microscopy by point-spread-function engineering
    Wen, Gang
    Li, Simin
    Wang, Linbo
    Chen, Xiaohu
    Sun, Zhenglong
    Liang, Yong
    Jin, Xin
    Xing, Yifan
    Jiu, Yaming
    Tang, Yuguo
    Li, Hui
    [J]. LIGHT-SCIENCE & APPLICATIONS, 2021, 10 (01)
  • [36] York AG, 2012, NAT METHODS, V9, P749, DOI [10.1038/nmeth.2025, 10.1038/NMETH.2025]
  • [37] Multi-Stage Progressive Image Restoration
    Zamir, Syed Waqas
    Arora, Aditya
    Khan, Salman
    Hayat, Munawar
    Khan, Fahad Shahbaz
    Yang, Ming-Hsuan
    Shao, Ling
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 14816 - 14826
  • [38] Alternative deep learning method for fast spatial-frequency shift imaging microscopy
    Zhang, Qianwei
    Liang, Chenhui
    Tang, Mingwei
    Yang, Xiaoyu
    Lin, Muchun
    Han, Yubing
    Liu, Xu
    Yang, Qing
    [J]. OPTICS EXPRESS, 2023, 31 (03) : 3719 - 3730
  • [39] Zhao H., 2020, COMPUTER VISION ECCV, DOI [10.48550/arXiv.2010.01073, DOI 10.1007/978-3-030-67070-2_3]
  • [40] Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy
    Zhao, Weisong
    Zhao, Shiqun
    Li, Liuju
    Huang, Xiaoshuai
    Xing, Shijia
    Zhang, Yulin
    Qiu, Guohua
    Han, Zhenqian
    Shang, Yingxu
    Sun, De-En
    Shan, Chunyan
    Wu, Runlong
    Gu, Lusheng
    Zhang, Shuwen
    Chen, Riwang
    Xiao, Jian
    Mo, Yanquan
    Wang, Jianyong
    Ji, Wei
    Chen, Xing
    Ding, Baoquan
    Liu, Yanmei
    Mao, Heng
    Song, Bao-Liang
    Tan, Jiubin
    Liu, Jian
    Li, Haoyu
    Chen, Liangyi
    [J]. NATURE BIOTECHNOLOGY, 2022, 40 (04) : 606 - +