An Evaluation of NOAA Modeled and In Situ Soil Moisture Values and Variability across the Continental United States

被引:1
作者
Marinescu, Peter j. [1 ,2 ]
Abdi, Daniel [3 ]
Hilburn, Kyle [2 ]
Jankov, Isidora [4 ]
Lin, Liao-fan [2 ,4 ]
机构
[1] Colorado State Univ, Ft Collins, CO 80523 USA
[2] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA
[3] Univ Colorado Boulder, Cooperat Inst Res Environm Sci, Boulder, CO USA
[4] NOAA OAR, Global Syst Lab, Boulder, CO USA
关键词
Soil moisture; Model evaluation/performance; Data assimilation; Land surface model; Seasonal cycle; CLIMATE REFERENCE NETWORK; TEMPERATURE; SIMULATIONS; SATELLITE; WEATHER;
D O I
10.1175/WAF-D-23-0136.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Estimates of soil moisture from two National Oceanic and Atmospheric Administration (NOAA) models are compared to in situ observations. The estimates are from a high -resolution atmospheric model with a land surface model [High -Resolution Rapid Refresh (HRRR) model] and a hydrologic model from the NOAA Climate Prediction Center (CPC). Both models produce wetter soils in dry regions and drier soils in wet regions, as compared to the in situ observations. These soil moisture differences occur at most soil depths but are larger at the deeper depths below the surface (100 cm). Comparisons of soil moisture variability are also assessed as a function of soil moisture regime. Both models have lower standard deviations as compared to the in situ observations for all soil moisture regimes. The HRRR model's soil moisture is better correlated with in situ observations for drier soils as compared to wetter soils}a trend that was not present in the CPC model comparisons. In terms of seasonality, soil moisture comparisons vary depending on the metric, time of year, and soil moisture regime. Therefore, consideration of both the seasonality and soil moisture regime is needed to accurately determine model biases. These NOAA soil moisture estimates are used for a variety of forecasting and societal applications, and understanding their differences provides important context for their applications and can lead to model improvements.
引用
收藏
页码:523 / 540
页数:18
相关论文
共 47 条
[1]   Climate variability and impacts on maize (Zea mays) yield in Ghana, West Africa [J].
Atiah, Winifred A. ;
Amekudzi, Leonard K. ;
Akum, Robert A. ;
Quansah, Emmanuel ;
Antwi-Agyei, Philip ;
Danuor, Sylvester K. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2022, 148 (742) :185-198
[2]   Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors [J].
Beck, Hylke E. ;
Pan, Ming ;
Miralles, Diego G. ;
Reichle, Rolf H. ;
Dorigo, Wouter A. ;
Hahn, Sebastian ;
Sheffield, Justin ;
Karthikeyan, Lanka ;
Balsamo, Gianpaolo ;
Parinussa, Robert M. ;
van Dijk, Albert I. J. M. ;
Du, Jinyang ;
Kimball, John S. ;
Vergopolan, Noemi ;
Wood, Eric F. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2021, 25 (01) :17-40
[3]   U.S. Climate Reference Network Soil Moisture and Temperature Observations [J].
Bell, Jesse E. ;
Palecki, Michael A. ;
Baker, C. Bruce ;
Collins, William G. ;
Lawrimore, Jay H. ;
Leeper, Ronald D. ;
Hall, Mark E. ;
Kochendorfer, John ;
Meyers, Tilden P. ;
Wilson, Tim ;
Diamond, Howard J. .
JOURNAL OF HYDROMETEOROLOGY, 2013, 14 (03) :977-988
[4]   Land-Snow Data Assimilation Including a Moderately Coupled Initialization Method Applied to NWP [J].
Benjamin, Stanley G. ;
Smirnova, Tatiana G. ;
James, Eric P. ;
Lin, Liao-Fan ;
Hu, Ming ;
Turner, David D. ;
He, Siwei .
JOURNAL OF HYDROMETEOROLOGY, 2022, 23 (06) :825-845
[5]   Assimilation of Passive L-band Microwave Brightness Temperatures in the Canadian Land Data Assimilation System: Impacts on Short-Range Warm Season Numerical Weather Prediction [J].
Carrera, Marco L. ;
Bilodeau, Bernard ;
Belair, Stephane ;
Abrahamowicz, Maria ;
Russell, Albert ;
Wang, Xihong .
JOURNAL OF HYDROMETEOROLOGY, 2019, 20 (06) :1053-1079
[6]  
Delworth TL, 1988, J CLIMATE, V1, DOI 10.1175/1520-0442(1988)001<0523:TIOPEO>2.0.CO
[7]  
2
[8]   Confronting Weather and Climate Models with Observational Data from Soil Moisture Networks over the United States [J].
Dirmeyer, Paul A. ;
Wu, Jiexia ;
Norton, Holly E. ;
Dorigo, Wouter A. ;
Quiring, Steven M. ;
Ford, Trenton W. ;
Santanello, Joseph A., Jr. ;
Bosilovich, Michael G. ;
Ek, Michael B. ;
Koster, Randal D. ;
Balsamo, Gianpaolo ;
Lawrence, David M. .
JOURNAL OF HYDROMETEOROLOGY, 2016, 17 (04) :1049-1067
[9]   The High-Resolution Rapid Refresh (HRRR): An Hourly Updating Convection-Allowing Forecast Model. Part I: Motivation and System Description [J].
Dowell, David C. ;
Alexander, Curtis R. ;
James, Eric P. ;
Weygandt, Stephen S. ;
Benjamin, Stanley G. ;
Manikin, Geoffrey S. ;
Blake, Benjamin T. ;
Brown, John M. ;
Olson, Joseph B. ;
Hu, Ming ;
Smirnova, Tatiana G. ;
Ladwig, Terra ;
Kenyon, Jaymes S. ;
Ahmadov, Ravan ;
Turner, David D. ;
Duda, Jeffrey D. ;
Alcott, Trevor I. .
WEATHER AND FORECASTING, 2022, 37 (08) :1371-1395
[10]  
Ek MB, 2004, J HYDROMETEOROL, V5, P86, DOI 10.1175/1525-7541(2004)005<0086:IOSMOB>2.0.CO