Recovering income distribution in the presence of interval-censored data

被引:1
作者
Rios-Avila, Fernando [1 ]
Canavire-Bacarreza, Gustavo [2 ,3 ]
Sacco-Capurro, Flavia [2 ]
机构
[1] Bard Coll, Levy Inst, New York, NY 12504 USA
[2] World Bank, Washington, DC USA
[3] Univ Privada Boliviana, La Paz, Bolivia
关键词
Interval-censored data; Monte Carlo simulation; Heteroskedastic interval regression; Wages; C150; C340; J3; MULTIPLE-IMPUTATION; REGRESSION; MODELS;
D O I
10.1007/s10888-023-09617-2
中图分类号
F [经济];
学科分类号
02 ;
摘要
We propose a method to analyze interval-censored data using a multiple imputation based on a Heteroskedastic Interval regression approach. The proposed model aims to obtain a synthetic dataset that can be used for standard analysis, including standard linear regression, quantile regression, or poverty and inequality estimation. We present two applications to show the performance of our method. First, we run a Monte Carlo simulation to show the method's performance under the assumption of multiplicative heteroskedasticity, with and without conditional normality. Second, we use the proposed methodology to analyze labor income data in Grenada for 2013-2020, where the salary data are interval-censored according to the salary intervals prespecified in the survey questionnaire. The results obtained are consistent across both exercises.
引用
收藏
页码:1039 / 1060
页数:22
相关论文
共 30 条
[1]   Maximum likelihood estimation for survey data with informative interval censoring [J].
Angelov, Angel G. ;
Ekstrom, Magnus .
ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2019, 103 (02) :217-236
[2]  
[Anonymous], 2000, J Off Stat
[3]  
Buttner Thomas., 2008, Multiple imputation of right-censored wages in the German IAB Employment Sample considering heteroscedasticity
[4]  
Cameron A. C., 2005, Microeconometrics: Methods and Applications
[5]   A Unified Approach to Estimating and Testing Income Distributions With Grouped Data [J].
Chen, Yi-Ting .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2018, 36 (03) :438-455
[6]   Fast algorithms for the quantile regression process [J].
Chernozhukov, Victor ;
Fernandez-Val, Ivan ;
Melly, Blaise .
EMPIRICAL ECONOMICS, 2022, 62 (01) :7-33
[7]   A Map of the Poor or a Poor Map? [J].
Corral, Paul ;
Himelein, Kristen ;
McGee, Kevin ;
Molina, Isabel .
MATHEMATICS, 2021, 9 (21)
[8]  
Enders C. K., 2022, Applied missing data analysis
[9]   Missing Not at Random Models for Latent Growth Curve Analyses [J].
Enders, Craig K. .
PSYCHOLOGICAL METHODS, 2011, 16 (01) :1-16
[10]   Unconditional Quantile Regressions [J].
Firpo, Sergio ;
Fortin, Nicole M. ;
Lemieux, Thomas .
ECONOMETRICA, 2009, 77 (03) :953-973