DiffDP: Radiotherapy Dose Prediction via a Diffusion Model

被引:12
作者
Feng, Zhenghao [1 ]
Wen, Lu [1 ]
Wang, Peng [1 ]
Yan, Binyu [1 ]
Wu, Xi [2 ]
Zhou, Jiliu [1 ,2 ]
Wang, Yan [1 ]
机构
[1] Sichuan Univ, Sch Comp Sci, Chengdu, Peoples R China
[2] Chengdu Univ Informat Technol, Sch Comp Sci, Chengdu, Peoples R China
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT VI | 2023年 / 14225卷
基金
中国国家自然科学基金;
关键词
Radiotherapy Treatment; Dose Prediction; Diffusion Model; Deep Learning;
D O I
10.1007/978-3-031-43987-2_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Currently, deep learning (DL) has achieved the automatic prediction of dose distribution in radiotherapy planning, enhancing its efficiency and quality. However, existing methods suffer from the over-smoothing problem for their commonly used L-1 or L-2 loss with posterior average calculations. To alleviate this limitation, we innovatively introduce a diffusion-based dose prediction (DiffDP) model for predicting the radiotherapy dose distribution of cancer patients. Specifically, the DiffDP model contains a forward process and a reverse process. In the forward process, DiffDP gradually transforms dose distribution maps into Gaussian noise by adding small noise and trains a noise predictor to predict the noise added in each timestep. In the reverse process, it removes the noise from the original Gaussian noise in multiple steps with the well-trained noise predictor and finally outputs the predicted dose distribution map. To ensure the accuracy of the prediction, we further design a structure encoder to extract anatomical information from patient anatomy images and enable the noise predictor to be aware of the dose constraints within several essential organs, i.e., the planning target volume and organs at risk. Extensive experiments on an in-house dataset with 130 rectum cancer patients demonstrate the superiority of our method.
引用
收藏
页码:191 / 201
页数:11
相关论文
共 27 条
  • [1] Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
    Chen, Liang-Chieh
    Zhu, Yukun
    Papandreou, George
    Schroff, Florian
    Adam, Hartwig
    [J]. COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 : 833 - 851
  • [2] Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC)
    Graham, MV
    Purdy, JA
    Emami, B
    Harms, W
    Bosch, W
    Lockett, MA
    Perez, CA
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1999, 45 (02): : 323 - 329
  • [3] Helal A., 2020, Denoising diffusion probabilistic models, V33, P6840
  • [4] Ho J., 2020, P NIPS, V33, P6840
  • [5] Diffusion Deformable Model for 4D Temporal Medical Image Generation
    Kim, Boah
    Ye, Jong Chul
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT I, 2022, 13431 : 539 - 548
  • [6] SRDiff: Single image super-resolution with diffusion probabilistic models
    Li, Haoying
    Yang, Yifan
    Chang, Meng
    Chen, Shiqi
    Feng, Huajun
    Xu, Zhihai
    Li, Qi
    Chen, Yueting
    [J]. NEUROCOMPUTING, 2022, 479 : 47 - 59
  • [7] Explainable attention guided adversarial deep network for 3D radiotherapy dose distribution prediction
    Li, Huidong
    Peng, Xingchen
    Zeng, Jie
    Xiao, Jianghong
    Nie, Dong
    Zu, Chen
    Wu, Xi
    Zhou, Jiliu
    Wang, Yan
    [J]. KNOWLEDGE-BASED SYSTEMS, 2022, 241
  • [8] Technical Note: A cascade 3D U-Net for dose prediction in radiotherapy
    Liu, Shuolin
    Zhang, Jingjing
    Li, Teng
    Yan, Hui
    Liu, Jianfei
    [J]. MEDICAL PHYSICS, 2021, 48 (09) : 5574 - 5582
  • [9] Mahmood R., 2018, PROC MACH LEARN RES, V85, P484
  • [10] Possibility of chest wall dose reduction using volumetric-modulated arc therapy (VMAT) in radiation-induced rib fracture cases: comparison with stereotactic body radiation therapy (SBRT)
    Murakami, Yu
    Nakano, Masahiro
    Yoshida, Masahiro
    Hirashima, Hideaki
    Nakamura, Fumiya
    Fukunaga, Junichi
    Hirose, Taka-aki
    Yoshioka, Yasuo
    Oguchi, Masahiko
    Hirata, Hideki
    [J]. JOURNAL OF RADIATION RESEARCH, 2018, 59 (03) : 327 - 332