RESSCAL3D: RESOLUTION SCALABLE 3D SEMANTIC SEGMENTATION OF POINT CLOUDS

被引:1
作者
Royen, Remco [1 ]
Munteanu, Adrian [1 ]
机构
[1] Vrije Univ Brussel, Dept ETRO, Pl laan 2, B-1050 Brussels, Belgium
来源
2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP | 2023年
关键词
Resolution scalability; point cloud processing; semantic segmentation; scalable data acquisition;
D O I
10.1109/ICIP49359.2023.10222338
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
While deep learning-based methods have demonstrated outstanding results in numerous domains, some important functionalities are missing. Resolution scalability is one of them. In this work, we introduce a novel architecture, dubbed RESSCAL3D, providing resolution-scalable 3D semantic segmentation of point clouds. In contrast to existing works, the proposed method does not require the whole point cloud to be available to start inference. Once a low-resolution version of the input point cloud is available, first semantic predictions can be generated in an extremely fast manner. This enables early decision-making in subsequent processing steps. As additional points become available, these are processed in parallel. To improve performance, features from previously computed scales are employed as prior knowledge at the current scale. Our experiments show that RESSCAL3D is 31-62% faster than the non-scalable baseline while keeping a limited impact on performance. To the best of our knowledge, the proposed method is the first to propose a resolution-scalable approach for 3D semantic segmentation of point clouds based on deep learning.
引用
收藏
页码:2775 / 2779
页数:5
相关论文
共 50 条
  • [41] MHNet: Multiscale Hierarchical Network for 3D Point Cloud Semantic Segmentation
    Liang, Xiaoli
    Fu, Zhongliang
    IEEE ACCESS, 2019, 7 : 173999 - 174012
  • [42] A Depth Image Fusion Network for 3D Point Cloud Semantic Segmentation
    Wang, Zhou
    Jia, Zixi
    Lyu, Ao
    Wang, Yating
    Sun, Changsheng
    Liu, Yongxin
    2019 9TH IEEE ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (IEEE-CYBER 2019), 2019, : 849 - 853
  • [43] Semantic segmentation of 3D point cloud based on contextual attention CNN
    Yang J.
    Dang J.
    Tongxin Xuebao/Journal on Communications, 2020, 41 (07): : 195 - 203
  • [44] Annotation Tool and Urban Dataset for 3D Point Cloud Semantic Segmentation
    Ibrahim, Muhammad
    Akhtar, Naveed
    Wise, Michael
    Mian, Ajmal
    IEEE ACCESS, 2021, 9 : 35984 - 35996
  • [45] 3D Point Cloud Semantic Segmentation System Based on Lightweight FPConv
    Fan, Yu-Cheng
    Liao, Kuan-Yu
    Xiao, You-Sheng
    Lu, Min-Hua
    Yan, Wei-Zhe
    IEEE ACCESS, 2023, 11 : 31767 - 31777
  • [46] 3d indoor point cloud semantic segmentation using image and voxel
    Yeom S.-S.
    Ha J.-E.
    Ha, Jong-Eun (jeha@seoultech.ac.kr), 1600, Institute of Control, Robotics and Systems (27): : 1000 - 1007
  • [47] SHREC 2020: 3D point cloud semantic segmentation for street scenes
    Ku, Tao
    Veltkamp, Remco C.
    Boom, Bas
    Duque-Arias, David
    Velasco-Forero, Santiago
    Deschaud, Jean-Emmanuel
    Goulette, Francois
    Marcotegui, Beatriz
    Ortega, Sebastian
    Trujillo, Agustin
    Pablo Suarez, Jose
    Miguel Santana, Jose
    Ramirez, Cristian
    Akadas, Kiran
    Gangisetty, Shankar
    COMPUTERS & GRAPHICS-UK, 2020, 93 : 13 - 24
  • [48] Transfer Learning Based Semantic Segmentation for 3D Object Detection from Point Cloud
    Imad, Muhammad
    Doukhi, Oualid
    Lee, Deok-Jin
    SENSORS, 2021, 21 (12)
  • [49] BSTS: A Weakly-Supervised Method for Semantic Learning of 3D Point Clouds
    Liu, Yan
    Hu, Qingyong
    Guo, Yulan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (11) : 11386 - 11399
  • [50] A Study on the Effect of Multispectral LiDAR Data on Automated Semantic Segmentation of 3D-Point Clouds
    Vierhub-Lorenz, Valentin
    Kellner, Maximilian
    Zipfel, Oliver
    Reiterer, Alexander
    REMOTE SENSING, 2022, 14 (24)