Holomorphic general coordinate invariant modified measure gravitational theory

被引:6
作者
Guendelman, Eduardo [1 ,2 ,3 ]
机构
[1] Bengurion Univ Negev, Dept Phys, Beer Sheva, Israel
[2] Frankfurt Inst Adv Studies FIAS, Ruth Moufang Str 1, D-60438 Frankfurt, Germany
[3] Bahamas Adv Study Inst & Conferences, 4A Ocean Hts,Hill View Circle, Stella Maris, Long Isl, Bahamas
关键词
Holomorphic Gravitational Theory; Modified measure; Complex space time; The Cosmological constant; DARK-MATTER; INFLATION; GRAVITY; SYMMETRY; ENERGY;
D O I
10.1016/j.aop.2023.169466
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Complexifying space time has many interesting applications, from the construction of higher dimensional unification, to provide a useful framework for quantum gravity and to better define some local symmetries that suffer singularities in real space time. In this context here spacetime is extended to complex spacetime and standard general coordinate invariance is also extended to complex holomorphic general coordinate transformations. This is possible by introducing a non Riemannian Measure of integration, which transforms avoiding non holomorphic behavior. Instead the measure transforms according to the inverse of the jacobian of the coordinate transformation and avoids the traditional square root of the determinant of the metric root-g. which is not globally holomorphic, or the determinant of the vierbein which is sensitive to the vierbein orientations and not invariant under local lorentz transformations with negative determinants. A contribution to the cosmological term appears as an integration constant in the equations of motion. A proposed action for Finsler geometry, which involves -g rather than root-g will also constitute an example of a Holomorphic General Coordinate Invariant Modified Measure Gravitational Theory. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:9
相关论文
共 53 条
[1]   Quantum gravity phenomenology at the dawn of the multi-messenger era-A review [J].
Addazi, A. ;
Alvarez-Muniz, J. ;
Alves Batista, R. ;
Amelino-Camelia, G. ;
Antonelli, V ;
Arzano, M. ;
Asorey, M. ;
Atteia, J-L ;
Bahamonde, S. ;
Bajardi, F. ;
Ballesteros, A. ;
Baret, B. ;
Barreiros, D. M. ;
Basilakos, S. ;
Benisty, D. ;
Birnholtz, O. ;
Blanco-Pillado, J. J. ;
Blas, D. ;
Bolmont, J. ;
Boncioli, D. ;
Bosso, P. ;
Calcagni, G. ;
Capozziello, S. ;
Carmona, J. M. ;
Cerci, S. ;
Chernyakova, M. ;
Clesse, S. ;
Coelho, J. A. B. ;
Colak, S. M. ;
Cortes, J. L. ;
Das, S. ;
D'Esposito, V ;
Demirci, M. ;
Di Luca, M. G. ;
di Matteo, A. ;
Dimitrijevic, D. ;
Djordjevic, G. ;
Prester, D. Dominis ;
Eichhorn, A. ;
Ellis, J. ;
Escamilla-Rivera, C. ;
Fabiano, G. ;
Franchino-Vinas, S. A. ;
Frassino, A. M. ;
Frattulillo, D. ;
Funk, S. ;
Fuster, A. ;
Gamboa, J. ;
Gent, A. ;
Gergely, L. A. .
PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, 2022, 125
[2]  
[Anonymous], Signed Coordinate Invariance, invariant lagrangians and manifolds, the time problem in quantum cosmology, quantum space time, spacetimes and antispacetimes Eduardo Guendelman
[3]   Quantum effects of a massive 3-form coupled to a Dirac field [J].
Aurilia, A ;
Spallucci, E .
PHYSICAL REVIEW D, 2004, 69 (10)
[4]  
Blaha Stephen, 2008, A Direct Derivation of the Form of the Standard Model from GL(16)
[5]   Complexified gravity in noncommutative spaces [J].
Chamseddine, AH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 218 (02) :283-292
[6]   A WAY TO DYNAMICALLY OVERCOME THE OLD COSMOLOGICAL CONSTANT PROBLEM [J].
Comelli, Denis .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2008, 23 (25) :4133-4143
[7]   K-essence and kinetic gravity braiding models in two-field measure theory [J].
Cordero, R. ;
Miranda, O. G. ;
Serrano-Crivelli, M. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2019, (07)
[8]  
Cordero Ruben, e-Print: 2204.05469 [gr-qc]
[9]   Emergent universe from scale invariant two measures theory [J].
del Campo, Sergio ;
Guendelman, Eduardo I. ;
Kaganovich, Alexander B. ;
Herrera, Ramon ;
Labrana, Pedro .
PHYSICS LETTERS B, 2011, 699 (04) :211-216
[10]   Emerging universe from scale invariance [J].
del Campo, Sergio ;
Guendelman, Eduardo I. ;
Herrera, Ramon ;
Labrana, Pedro .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2010, (06)