Euler sums of generalized alternating hyperharmonic numbers II

被引:0
作者
Li, Rusen [1 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
关键词
Generalized alternating hyperharmonic numbers; Alternating Euler sums; Truncated Faulhaber's formula; Combinatorial approach;
D O I
10.1007/s11139-023-00761-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a new type of generalized alternating hyperharmonic number H-n((p,r,s1,s2)), and showthat the Euler sums of the generalized alternating hyperharmonic numbers H-n((p,r,s1,s2)) can be expressed in terms of linear combinations of the classical (alternating) Euler sums.
引用
收藏
页码:383 / 411
页数:29
相关论文
共 17 条
  • [1] Bailey DH., 1994, Exp Math, V3, P17, DOI [DOI 10.1080/10586458.1998.10504356, DOI 10.1080/10586458.1994.10504573, 10.1080/10586458.1998.10504356]
  • [2] Benjamin AT., 2003, Integers, V3, pA15
  • [3] Faulhaber's theorem on power sums
    Chen, William Y. C.
    Fu, Amy M.
    Zhang, Iris F.
    [J]. DISCRETE MATHEMATICS, 2009, 309 (10) : 2974 - 2981
  • [4] Conway J. H., 1996, The Book of Numbers, DOI DOI 10.1007/978-1-4612-4072-3
  • [5] Evaluation of Euler-like sums via Hurwitz zeta values
    Dil, Ayhan
    Mezo, Istvan
    Cenkci, Mehmet
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2017, 41 (06) : 1640 - 1655
  • [6] Euler sums of hyperharmonic numbers
    Dil, Ayhan
    Boyadzhiev, Khristo N.
    [J]. JOURNAL OF NUMBER THEORY, 2015, 147 : 490 - 498
  • [7] Euler sums and contour integral representations
    Flajolet, P
    Salvy, B
    [J]. EXPERIMENTAL MATHEMATICS, 1998, 7 (01) : 15 - 35
  • [8] Divisibility properties of hyperharmonic numbers
    Goral, H.
    Sertbas, D. C.
    [J]. ACTA MATHEMATICA HUNGARICA, 2018, 154 (01) : 147 - 186
  • [9] Kamano K., 2011, Mem. Osaka Inst. Technol., Ser. A, V56, P11
  • [10] Knuth D., 1968, ART COMPUTER PROGRAM, V1