Synergetic surface modification of 3D braided carbon fiber-reinforced composites for enhancing mechanical strength

被引:13
作者
Li, Jinyu [1 ,2 ]
Yuan, Lin [1 ,2 ,4 ]
Wu, Zihang [3 ]
Zhang, Tao [3 ]
Wang, Chi [3 ]
Li, Miao [3 ]
Shan, Debin [1 ,2 ]
Guo, Bin [1 ,2 ]
机构
[1] Natl Key Lab Precis Hot Proc Met, Harbin 150001, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Heilongjiang, Peoples R China
[3] Harbin Inst Technol Weihai, Sch Mat Sci & Engn, Weihai 264209, Shandong, Peoples R China
[4] POB 435,92 West Dazhi St, Harbin 150001, Heilongjiang, Peoples R China
关键词
Synergetic treatment; 3D braided carbon fiber-reinforced composites; Wettability; Interfacial adhesion; Mechanical properties; INTERFACIAL SHEAR-STRENGTH; EPOXY; ADHESION; FABRICATION; PRESSURE; MATRIX;
D O I
10.1016/j.apsusc.2023.158189
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Excellent interfacial bonding contributes to the reduction of internal defects in composites for enhancing the mechanical properties of the 3D braided carbon fiber reinforced composites. In this paper, the effects of plasma and strong acid treatment on the surface morphology, chemical composition, and surface free energy of original carbon fiber braid (CFB) were investigated in detail to reveal the mechanism of synergetic enhancement of surface wettability of carbon fiber by plasma and strong acid. The results showed that the synergetic effect of plasma and strong acid produced significantly improved the resin/fiber interfacial bonding. The interfacial shear strength (IFSS) of the carbon fiber braided reinforced composites (CFBC) treated with the synergetic treatment was 64.6% higher than that of the untreated fiber reinforced composites. The improved interfacial properties increase the polar functional groups on the fiber surface to promote the formation of mechanical interlocking caused by Cassie-Baxter(CB) and Wenzel(WZ) leaps of liquid resin on the fiber surface, and this was verified by molecular dynamics(MD) simulations of carbon fiber-resin interfacial wetting. The simple and effective synergetic reinforcement strategy proposed in this paper can effectively regulate the interfacial bonding and is applicable to the optimal design of original carbon fiber braided reinforced composites.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Effects of acrylamide on mechanical and tribological properties of carbon fiber-reinforced epoxy composites
    Chong, Chuanguang
    Shang, Wulin
    Che, Yuanyuan
    Huang, Jin
    Zhou, Shaofeng
    Zhang, Qiaoxin
    JOURNAL OF COMPOSITE MATERIALS, 2015, 49 (12) : 1461 - 1469
  • [22] Characterizations of continuous carbon fiber-reinforced composites for electromagnetic interference shielding fabricated by 3D printing
    Yin, Lixian
    Tian, Xiaoyong
    Shang, Zhentao
    Wang, Xin
    Hou, Zhanghao
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2019, 125 (04):
  • [23] Mechanical and oxidation resistance properties of 3D carbon fiber-reinforced mullite matrix composites prepared by sol-gel process
    Liu, Haitao
    Ma, Qingsong
    Liu, Weidong
    CERAMICS INTERNATIONAL, 2014, 40 (05) : 7203 - 7212
  • [24] Modification on glass fiber surface and their improved properties of fiber-reinforced composites via enhanced interfacial properties
    Ren, Dengxun
    Li, Kui
    Chen, Lin
    Chen, Sijing
    Han, Mangui
    Xu, Mingzhen
    Liu, Xiaobo
    COMPOSITES PART B-ENGINEERING, 2019, 177
  • [25] Improvements in mechanical properties of carbon fiber-reinforced epoxy composites: A microwave-assisted approach in functionalization of carbon fiber via diamines
    Moaseri, Ehsan
    Maghrebi, Morteza
    Baniadam, Majid
    MATERIALS & DESIGN, 2014, 55 : 644 - 652
  • [26] Reducing Surface Roughness of 3D Printed Short-Carbon Fiber Reinforced Composites
    Maier, Raluca
    Bucaciuc, Sebastian-Gabriel
    Mandoc, Andrei Cristian
    MATERIALS, 2022, 15 (20)
  • [27] Carbon nanotube as a conductive rheological modifier for carbon fiber-reinforced epoxy 3D printing inks
    Kasraie, Masoud
    Krieg, Aaron S.
    Abbott, Andrew C.
    Gawde, Akash
    Eisele, Timothy C.
    King, Julia A.
    Odegard, Gregory M.
    Baur, Jeffery W.
    Abadi, Parisa Pour Shahid Saeed
    COMPOSITES PART B-ENGINEERING, 2024, 282
  • [28] Short Bamboo Fiber-reinforced HDPE Composites: Influence of Fiber Content and Modification on Strength of the Composite
    Mohanty, Smita
    Nayak, Sanjay K.
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2010, 29 (14) : 2199 - 2210
  • [29] Crystallization behaviors and mechanical properties of carbon fiber-reinforced polypropylene composites
    Huafeng Tian
    Shuai Zhang
    Xiang Ge
    Aimin Xiang
    Journal of Thermal Analysis and Calorimetry, 2017, 128 : 1495 - 1504
  • [30] Crystallization behaviors and mechanical properties of carbon fiber-reinforced polypropylene composites
    Tian, Huafeng
    Zhang, Shuai
    Ge, Xiang
    Xiang, Aimin
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2017, 128 (03) : 1495 - 1504