Numerical investigation of suppressing thermal runaway propagation in a lithium-ion battery pack using thermal insulators

被引:23
|
作者
Gong, Junhui [1 ]
Liu, Bo [1 ]
Lian, Haochen [1 ]
Liu, Jingyi [1 ]
Fu, Hui [1 ]
Miao, Yuxuan [1 ]
Liu, Jialong [1 ,2 ]
机构
[1] Nanjing Tech Univ, Coll Safety Sci & Engn, Nanjing 210009, Jiangsu, Peoples R China
[2] Nanjing Tech Univ, 30 Puzhu South Rd, Nanjing 210009, Jiangsu, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Lithium-ion battery pack; Thermal runaway propagation suppression; Thermal insulation boards; Numerical simulation; Temperature evolution; INTERNAL SHORT-CIRCUIT; MODEL; FIRE;
D O I
10.1016/j.psep.2023.06.092
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Thermal runaway propagation (TRP) in a lithium-ion battery pack is crucial to its safety concerning the potential hazards of fire or explosion. In current study, a TRP suppression method for a 4 x 4 battery pack using three insulation materials, silicate, ceramic and glass fiber boards, is numerically investigated. Reliability of the model is first verified by experimental temperature of a single battery during TR. Then, three sets of TRP scenarios initiated by external heating are studied to reveal the effects of insulation type, thickness (0.5-4 mm) and layout. The results show that thermal conductivity of insulation impacts its performance more greatly than thickness, and glass fiber outperforms silicate and ceramic fibers in preventing TRP. Bidirectional layout (BL) of insulation boards performs better than unidirectional layout (UL). For UL, row-to-row TRP exists and the TRP process is accelerated compared with non-insulation case if insulation boards fail, implying UL can prevent TRP only if the row-to-row TRP is inhibited. While for BL, TRP is only observed for 0.5 mm silicate fiber boards, and the critical heating power (6.5 kWm  2) triggering TRP in battery pack is much lower. The outcomes may provide useful theoretical bases and suggestions for safety design and risk assessment of battery pack.
引用
收藏
页码:1063 / 1075
页数:13
相关论文
共 50 条
  • [1] Numerical study of mini-channel liquid cooling for suppressing thermal runaway propagation in a lithium-ion battery pack
    Fu, Hui
    Wang, Junling
    Li, Lun
    Gong, Junhui
    Wang, Xuan
    APPLIED THERMAL ENGINEERING, 2023, 234
  • [2] Uncertainty assessment method for thermal runaway propagation of lithium-ion battery pack
    Zhang, Wencan
    Yuan, Jiangfeng
    Huang, Jianfeng
    Xie, Yi
    APPLIED THERMAL ENGINEERING, 2024, 238
  • [3] CFD study of nail penetration induced thermal runaway propagation in Lithium-Ion battery cell pack
    Uwitonze, Hosanna
    Ni, Aleksey
    Nagulapati, Vijay Mohan
    Kim, Heehyang
    Lim, Hankwon
    APPLIED THERMAL ENGINEERING, 2024, 243
  • [4] Numerical investigation on thermal runaway propagation and prevention in cell-to-chassis lithium-ion battery system
    Wang, Gongquan
    Gao, Wei
    He, Xu
    Peng, Rongqi
    Zhang, Yue
    Dai, Xinyi
    Ping, Ping
    Kong, Depeng
    APPLIED THERMAL ENGINEERING, 2024, 236
  • [5] Experimental Study on the Efficiency of Hydrogel on Suppressing Thermal Runaway Propagation of Lithium-Ion Battery
    Liu, Chunyuan
    Zhang, Guowei
    Yuan, Diping
    Jiang, Liming
    Fan, Yafei
    Kong, Depeng
    FIRE TECHNOLOGY, 2024,
  • [6] Modelling of thermal runaway propagation in lithium-ion battery pack using reduced-order model
    Xu, Chengshan
    Wang, Huaibin
    Jiang, Fachao
    Feng, Xuning
    Lu, Languang
    Jin, Changyong
    Zhang, Fangshu
    Huang, Wensheng
    Zhang, Mengqi
    Ouyang, Minggao
    ENERGY, 2023, 268
  • [7] Characteristics of and factors influencing thermal runaway propagation in lithium-ion battery packs
    Wang, Zhirong
    He, Tengfei
    Bian, Huan
    Jiang, Fengwei
    Yang, Yun
    JOURNAL OF ENERGY STORAGE, 2021, 41
  • [8] Numerical study of critical conditions for thermal runaway of lithium-ion battery pack during storage
    Zhao, Luyao
    Li, Wei
    Luo, Weiyi
    Zheng, Minxue
    Chen, Mingyi
    JOURNAL OF ENERGY STORAGE, 2024, 84
  • [9] Experimental investigation on suppression of thermal runaway propagation of lithium-ion battery by intermittent spray
    Zhang, Lin
    Duan, Qiangling
    Xu, Jiajia
    Meng, Xiangdong
    Sun, Jinhua
    Wang, Qingsong
    JOURNAL OF ENERGY STORAGE, 2023, 58
  • [10] Inhibition of Thermal Runaway Propagation in Lithium-Ion Battery Pack by Minichannel Cold Plates and Insulation Layers
    Liu, Xinyu
    Zhou, Zhifu
    Wu, Wei-Tao
    Lv, Jizu
    Hu, Chengzhi
    Gao, Linsong
    Li, Yang
    Li, Yubai
    Song, Yongchen
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2023, 2023