Topological asymptotic expansion for the full Navier-Stokes equations

被引:0
|
作者
Hassine, Maatoug [1 ]
Chaouch, Sana [1 ]
机构
[1] Monastir Univ, FSM, Monastir, Tunisia
关键词
Asymptotic expansion; topological sensitivity analysis; Navier-Stokes equations; nonlinear operator; topological gradient; fluid mechanics; topology optimization; OPTIMIZATION; SHAPE; SENSITIVITY; FLUID; DESIGN;
D O I
10.3233/ASY-221807
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with a topological sensitivity analysis for the two dimensional incompressible Navier-Stokes equations. We derive a topological asymptotic expansion for a shape functional with respect to the creation of a small geometric perturbation inside the fluid flow domain. The geometric perturbation is modeled as a small obstacle. The asymptotic behavior of the perturbed velocity field with respect to the obstacle size is discussed. The obtained results are valid for a large class of shape fonctions and arbitrarily shaped geometric perturbations. The established topological asymptotic expansion provides a useful tool for shape and topology optimization in fluid mechanics.
引用
收藏
页码:91 / 121
页数:31
相关论文
共 50 条
  • [41] A Study of the Navier-Stokes Equations with the Kinematic and Navier Boundary Conditions
    Chen, Gui-Qiang
    Qian, Zhongmin
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2010, 59 (02) : 721 - 760
  • [42] Linearised coupling of elasticity and Navier-Stokes equations
    Lasiecka, Irena
    Szulc, Katarzyna
    Zochowski, Antoni
    2015 20TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2015, : 208 - 210
  • [43] Duality, vector advection and the Navier-Stokes equations
    Brzezniak, Z.
    Neklyudov, M.
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2009, 6 (01) : 53 - 93
  • [44] On the solutions to the normal form of the Navier-Stokes equations
    Foias, Ciprian
    Hoang, Luan
    Olson, Eric
    Ziane, Mohammed
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2006, 55 (02) : 631 - 686
  • [45] The slightly compressible Navier-Stokes equations revisited
    Fabrie, P
    Galusinski, C
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 46 (08) : 1165 - 1195
  • [46] Partial and full hyper-viscosity for Navier-Stokes and primitive equations
    Hussein, Amru
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (04) : 3003 - 3030
  • [47] Existence and decay of solutions in full space to Navier-Stokes equations with delays
    Niche, Cesar J.
    Planas, Gabriela
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (01) : 244 - 256
  • [48] ON CONTINUATION CRITERIA FOR THE FULL COMPRESSIBLE NAVIER-STOKES EQUATIONS IN LORENTZ SPACES
    Wang, Yanqing
    Wei, Wei
    Wu, Gang
    Ye, Yulin
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (02) : 671 - 689
  • [49] An alternative full multigrid SIMPLEC approach for the incompressible Navier-Stokes equations
    de Oliveira, Jean Michael Borges
    Araki, Luciano Kiyoshi
    Pinto, Marcio Augusto Villela
    Goncalves, Simone de Fatima Tomazzoni
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2023, 83 (06) : 410 - 432
  • [50] On Continuation Criteria for the Full Compressible Navier-Stokes Equations in Lorentz Spaces
    Yanqing Wang
    Wei Wei
    Gang Wu
    Yulin Ye
    Acta Mathematica Scientia, 2022, 42 : 671 - 689