UV-Ozone Oxide for Surface Clean, Passivation, and Tunneling Contact Applications of Silicon Solar Cells

被引:4
作者
Gao, Munan [1 ]
Kumar, Vibhor [1 ]
Schoenfeld, Winston [2 ,3 ]
Zin, Ngwe [1 ,4 ]
机构
[1] Rutgers State Univ, Sch Engn, New Brunswick, NJ 08854 USA
[2] Univ Cent Florida, Florida Solar Energy Ctr, Orlando, FL 32816 USA
[3] Univ Cent Florida, Coll Opt & Photon, Orlando, FL 32816 USA
[4] Rutgers State Univ, Dept Elect & Comp Engn, New Brunswick, NJ 08854 USA
来源
IEEE JOURNAL OF PHOTOVOLTAICS | 2023年 / 13卷 / 03期
关键词
Passivation; Surface cleaning; Surface treatment; Silicon; Tunneling; Junctions; Surface morphology; Effective carrier lifetime; field-effect passivation; passivated contact; saturation current density; surface and junction passivation; UV-ozone cleaning; LAYER; RECOMBINATION; CONTAMINATION; INTERFACES; LEVEL;
D O I
10.1109/JPHOTOV.2023.3244370
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
We demonstrate the versatile use of UV-ozone oxide (UVo) in surface cleaning, surface passivation, diffused junction passivation, and current tunneling applications of crystalline silicon (c-Si) solar cells. A UV-ozone generated oxide is used as a surface clean for random textured c-Si samples and the effective-ness of surface clean is determined by capping with a thin layer of aluminum oxide (AlOx). Our developed UVo clean has resulted in a cleaning efficiency almost comparable to that of the benchmarked RCA clean, yielding a saturation current density of 12 fA/cm(2). When planar and textured c-Si samples are capped by a stack of UVo and AlOx, a UV-ozone growth time of no more than 3 min is found to provide an optimum surface passivation. When tested on phosphorus and boron diffused junctions (with sheet resistance, R-sh of 110-120 omega/?), the UVo and AlOx stack resulted in a J(0) of 11 fA/cm2 or lower. The high-resolution transmission electron microscope imaging revealed that UVo structure is stable upon annealing for passivation activation. Last, when applied as a tunneling contact, the UVo realizes a contact resistivity (rho(c)) of similar to 1 m omega-cm(2) and similar to 20 m omega-cm(2) for boron and phosphorus doped metal-insulator-semiconductor contact structures, respec-tively, with moderately doped diffusions.
引用
收藏
页码:385 / 390
页数:6
相关论文
共 55 条
[1]   Overview on SiN surface passivation of crystalline silicon solar cells [J].
Aberle, AG .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2001, 65 (1-4) :239-248
[2]   INJECTION-LEVEL DEPENDENT SURFACE RECOMBINATION VELOCITIES AT THE SILICON-PLASMA SILICON-NITRIDE INTERFACE [J].
ABERLE, AG ;
LAUINGER, T ;
SCHMIDT, J ;
HEZEL, R .
APPLIED PHYSICS LETTERS, 1995, 66 (21) :2828-2830
[3]  
Aberle AG, 2000, PROG PHOTOVOLTAICS, V8, P473, DOI 10.1002/1099-159X(200009/10)8:5<473::AID-PIP337>3.0.CO
[4]  
2-D
[5]   IMPACT OF ILLUMINATION LEVEL AND OXIDE PARAMETERS ON SHOCKLEY-READ-HALL RECOMBINATION AT THE SI-SIO2 INTERFACE [J].
ABERLE, AG ;
GLUNZ, S ;
WARTA, W .
JOURNAL OF APPLIED PHYSICS, 1992, 71 (09) :4422-4431
[6]   Passivating contacts for crystalline silicon solar cells [J].
Allen, Thomas G. ;
Bullock, James ;
Yang, Xinbo ;
Javey, Ali ;
De Wolf, Stefaan .
NATURE ENERGY, 2019, 4 (11) :914-928
[7]   Near-infrared free carrier absorption in heavily doped silicon [J].
Baker-Finch, Simeon C. ;
McIntosh, Keith R. ;
Yan, Di ;
Fong, Kean Chern ;
Kho, Teng C. .
JOURNAL OF APPLIED PHYSICS, 2014, 116 (06)
[8]   Simple and versatile UV-ozone oxide for silicon solar cell applications [J].
Bakhshi, Sara ;
Zin, Ngwe ;
Ali, Haider ;
Wilson, Marshall ;
Chanda, Debashis ;
Davis, Kristopher O. ;
Schoenfeld, Winston V. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 185 :505-510
[9]  
Berger H.H., 1969, Solid-State Circuits Conference. Digest of Technical Papers, P160, DOI DOI 10.1109/ISSCC.1969.1154702
[10]   Defect Generation at Charge-Passivated Si-SiO2 Interfaces by Ultraviolet Light [J].
Black, Lachlan E. ;
McIntosh, Keith R. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2010, 57 (08) :1996-2004