Improving Sentiment Analysis in Social Media by Handling Lengthened Words

被引:5
作者
Kukkar, Ashima [1 ]
Mohana, Rajni [2 ]
Sharma, Aman [2 ]
Nayyar, Anand [3 ]
Shah, Mohd. Asif [4 ,5 ]
机构
[1] Chitkara Univ, Inst Engn & Technol, Dept Comp Sci, Rajpura 140401, Punjab, India
[2] Jaypee Univ Informat Technol, Dept Comp Sci, Solan 173234, Himachal Prades, India
[3] Duy Tan Univ, Fac Informat Technol, Grad Sch, Da Nang 550000, Vietnam
[4] Bakhtar Univ, Dept Econ, Kabul 2496300, Afghanistan
[5] Woxsen Univ, Sch Business, Hyderabad 502345, Telangana, India
关键词
Sentiment analysis; natural language processing; social media; senti-score; lengthened words; emotional recognition;
D O I
10.1109/ACCESS.2023.3238366
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Machines are continually being channelized in the current era of automation to deliver accurate interpretations of what people communicate on social media. The human species is today engulfed in the concept of what and how people believe, and the decisions made as a result are mostly dependent on the sway of the masses on social media platforms. The usage of internet as well as social media is booming day by day. Today, this ocean of data can be used for the fruitful purposes. Analysis of social media sentiment textual posts can supply knowledge and information that can be used in citizen opinion polling, business intelligence, social contexts, and Internet of Things (IOT)-mood triggered devices. In this manuscript, the main focus is the sentiment analysis based on Emotional Recognition (ER). The proposed system highlights the process of gaining actual sentiment or mood of a person. The key idea to this system is posed by the fact that if smile and laughter can be two different categories of being happy, then why not happpyyyyyy and happy. A novel lexicon based system is proposed that considers the lengthened word as it is, instead of being omitted or normalized. The aggregated intensified senti-scores of lengthened words are calculated using framed lexicon rules. After that, these senti-scores of lengthened words are used to calculate the level of sentiment of the person. The dataset used in this paper is the informal chats happened among different friend groups over Facebook, Tweets and personal chat. The performance of proposed system is compared with traditional systems that ignore lengthened words and proposed system outperform tradition systems by achieving 81% to 96% F-measure rate for all datasets.
引用
收藏
页码:9775 / 9788
页数:14
相关论文
共 50 条
  • [31] Applying Transfer Learning to Sentiment Analysis in Social Media
    de Arriba, Ariadna
    Oriol, Marc
    Franch, Xavier
    29TH IEEE INTERNATIONAL REQUIREMENTS ENGINEERING CONFERENCE WORKSHOPS (REW 2021), 2021, : 342 - 348
  • [32] An Optimized Crossover Framework for Social Media Sentiment Analysis
    Samant, Surender Singh
    Singh, Vijay
    Chauhan, Arun
    Dasarahalli Narasimaiah, Jagadish
    CYBERNETICS AND SYSTEMS, 2024, 55 (08) : 2140 - 2168
  • [33] SenTube: A Corpus for Sentiment Analysis on YouTube Social Media
    Uryupina, Olga
    Plank, Barbara
    Severyn, Aliaksei
    Rotondi, Agata
    Moschitti, Alessandro
    LREC 2014 - NINTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2014, : 4244 - 4249
  • [34] Sentiment analysis on social media for stock movement prediction
    Thien Hai Nguyen
    Shirai, Kiyoaki
    Velcin, Julien
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (24) : 9603 - 9611
  • [35] A review on sentiment analysis from social media platforms
    Rodriguez-Ibanez, Margarita
    Casanez-Ventura, Antonio
    Castejon-Mateos, Felix
    Cuenca-Jimenez, Pedro-Manuel
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 223
  • [36] Automatic Indonesian Sentiment Lexicon Curation with Sentiment Valence Tuning for Social Media Sentiment Analysis
    Wijayanti, Rini
    Arisal, Andria
    ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2021, 20 (01)
  • [37] Corpora For Sentiment Analysis Of Arabic Text In Social Media
    Itani, Maher
    Roast, Chris
    Al-Khayatt, Samir
    2017 8TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2017, : 64 - 69
  • [38] Empirical comparison of sentiment analysis techniques for social media
    Hameed, Maria
    Tahir, Faizan
    Shahzad, M. Ali
    INTERNATIONAL JOURNAL OF ADVANCED AND APPLIED SCIENCES, 2018, 5 (04): : 115 - 123
  • [39] Challenges of Evaluating Sentiment Analysis Tools on Social Media
    Maynard, Diana
    Bontcheva, Kalina
    LREC 2016 - TENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2016, : 1142 - 1148
  • [40] Sentiment Analysis Using Word Polarity of Social Media
    Lyu, Kigon
    Kim, Hyeoncheol
    WIRELESS PERSONAL COMMUNICATIONS, 2016, 89 (03) : 941 - 958