Improving Sentiment Analysis in Social Media by Handling Lengthened Words

被引:5
作者
Kukkar, Ashima [1 ]
Mohana, Rajni [2 ]
Sharma, Aman [2 ]
Nayyar, Anand [3 ]
Shah, Mohd. Asif [4 ,5 ]
机构
[1] Chitkara Univ, Inst Engn & Technol, Dept Comp Sci, Rajpura 140401, Punjab, India
[2] Jaypee Univ Informat Technol, Dept Comp Sci, Solan 173234, Himachal Prades, India
[3] Duy Tan Univ, Fac Informat Technol, Grad Sch, Da Nang 550000, Vietnam
[4] Bakhtar Univ, Dept Econ, Kabul 2496300, Afghanistan
[5] Woxsen Univ, Sch Business, Hyderabad 502345, Telangana, India
关键词
Sentiment analysis; natural language processing; social media; senti-score; lengthened words; emotional recognition;
D O I
10.1109/ACCESS.2023.3238366
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Machines are continually being channelized in the current era of automation to deliver accurate interpretations of what people communicate on social media. The human species is today engulfed in the concept of what and how people believe, and the decisions made as a result are mostly dependent on the sway of the masses on social media platforms. The usage of internet as well as social media is booming day by day. Today, this ocean of data can be used for the fruitful purposes. Analysis of social media sentiment textual posts can supply knowledge and information that can be used in citizen opinion polling, business intelligence, social contexts, and Internet of Things (IOT)-mood triggered devices. In this manuscript, the main focus is the sentiment analysis based on Emotional Recognition (ER). The proposed system highlights the process of gaining actual sentiment or mood of a person. The key idea to this system is posed by the fact that if smile and laughter can be two different categories of being happy, then why not happpyyyyyy and happy. A novel lexicon based system is proposed that considers the lengthened word as it is, instead of being omitted or normalized. The aggregated intensified senti-scores of lengthened words are calculated using framed lexicon rules. After that, these senti-scores of lengthened words are used to calculate the level of sentiment of the person. The dataset used in this paper is the informal chats happened among different friend groups over Facebook, Tweets and personal chat. The performance of proposed system is compared with traditional systems that ignore lengthened words and proposed system outperform tradition systems by achieving 81% to 96% F-measure rate for all datasets.
引用
收藏
页码:9775 / 9788
页数:14
相关论文
共 50 条
  • [21] Every Post Matters: A Survey on Applications of Sentiment Analysis in Social Media
    Rathan, M.
    Hulipalled, Vishwanath R.
    Murugeshwari, P.
    Sushmitha, H. M.
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES FOR SMART NATION (SMARTTECHCON), 2017, : 709 - 714
  • [22] Sentiment Analysis on Social Media Using Morphological Sentence Pattern Model
    Han, Youngsub
    Kim, Kwangmi Ko
    2017 IEEE/ACIS 15TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING RESEARCH, MANAGEMENT AND APPLICATIONS (SERA), 2017, : 79 - 84
  • [23] Seeker Optimization with Deep Learning Enabled Sentiment Analysis on Social Media
    Alghamdi, Hanan M.
    Hamza, Saadia H. A.
    Mashraqi, Aisha M.
    Abdel-Khalek, Sayed
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (03): : 5985 - 5999
  • [24] Sentiment Analysis Using Word Polarity of Social Media
    Kigon Lyu
    Hyeoncheol Kim
    Wireless Personal Communications, 2016, 89 : 941 - 958
  • [25] A Survey of Sentiment Analysis from Social Media Data
    Chakraborty, Koyel
    Bhattacharyya, Siddhartha
    Bag, Rajib
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2020, 7 (02): : 450 - 464
  • [26] Exploring Semantic Relations for Social Media Sentiment Analysis
    Zeng, Jiandian
    Zhou, Jiantao
    Huang, Caishi
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2023, 31 : 2382 - 2394
  • [27] Sentiment Analysis on Educational Posts from Social Media
    Relucio, Floradel S.
    Palaoag, Thelma D.
    2018 9TH INTERNATIONAL CONFERENCE ON E-EDUCATION, E-BUSINESS, E-MANAGEMENT AND E-LEARNING (IC4E 2018), 2018, : 99 - 102
  • [28] Sentiment Analysis for Arabic Social Media News Polarity
    Hnaif, Adnan A.
    Kanan, Emran
    Kanan, Tarek
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2021, 28 (01) : 107 - 119
  • [29] Deep Learning for Automated Sentiment Analysis of Social Media
    Cheng, Li-Chen
    Tsai, Song-Lin
    PROCEEDINGS OF THE 2019 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2019), 2019, : 1001 - 1004
  • [30] Sentiment Analysis of National Tourism Organizations on Social Media
    Hruska, Jan
    HRADEC ECONOMIC DAYS 2020, VOL 10, PT 1, 2020, 10 : 250 - 256