On modules in which every finitely generated submodule is a kernel of an endomorphism

被引:1
作者
Neishabouri, Pegah [1 ]
Tolooei, Yaser [2 ]
Bagheri, Saeid [1 ]
机构
[1] Malayer Univ, Fac Math Sci, Dept Math, Malayer, Iran
[2] Razi Univ, Fac Sci, Dept Math, Kermanshah 6714967346, Iran
关键词
Co-epi-finite-retractable module; left pesudo morphic ring; regular module; RINGS;
D O I
10.1080/00927872.2022.2115504
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study an R-module M in which every finitely generated submodule of M is a kernel of an endomorphism of M. Such modules are called Co-epi-finite-retractable (CEFR). We also consider CEFR condition on the co-local modules, submodules and factors of a CEFR module and direct sum of CEFR modules. Among other results, we prove that the injective hull of a simple module over a commutative Noetherian ring is uniserial if and only if it is CEFR.We investigate modules over a principal ideal ring, and show that all finitely generated torsion modules over a principal ideal domain are CEFR. Also, we show that every module over a commutative Kothe ring is CEFR. We also observe that a ring R is left pseudo morphic if and only if it is CEFR as a left R-module and we obtain some new properties of left pseudo morphic rings.
引用
收藏
页码:841 / 858
页数:18
相关论文
共 21 条
  • [11] Lam Tsit-Yuen, 2012, Lectures on modules and rings, V189
  • [12] RICKART MODULES
    Lee, Gangyong
    Rizvi, S. Tariq
    Roman, Cosmin S.
    [J]. COMMUNICATIONS IN ALGEBRA, 2010, 38 (11) : 4005 - 4027
  • [13] Matlis E., 1960, Trans. Amer. Math. Soc., V97, P495
  • [14] Rings with the dual of the isomorphism theorem
    Nicholson, WK
    Campos, ES
    [J]. JOURNAL OF ALGEBRA, 2004, 271 (01) : 391 - 406
  • [15] Duo modules
    Ozcan, A. C.
    Harmanci, A.
    Smith, P. F.
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2006, 48 : 533 - 545
  • [16] Sharpe D. W., 1972, Injective Modules
  • [17] Essentially compressible modules and rings
    Smith, P. F.
    Vedadi, M. R.
    [J]. JOURNAL OF ALGEBRA, 2006, 304 (02) : 812 - 831
  • [18] Tuganbaev A., 2002, RINGS CLOSE REGULAR
  • [19] Wisbauer Robert, 2018, Foundations of module and ring theory
  • [20] Yang XS, 2010, ARXIV