On modules in which every finitely generated submodule is a kernel of an endomorphism

被引:1
作者
Neishabouri, Pegah [1 ]
Tolooei, Yaser [2 ]
Bagheri, Saeid [1 ]
机构
[1] Malayer Univ, Fac Math Sci, Dept Math, Malayer, Iran
[2] Razi Univ, Fac Sci, Dept Math, Kermanshah 6714967346, Iran
关键词
Co-epi-finite-retractable module; left pesudo morphic ring; regular module; RINGS;
D O I
10.1080/00927872.2022.2115504
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study an R-module M in which every finitely generated submodule of M is a kernel of an endomorphism of M. Such modules are called Co-epi-finite-retractable (CEFR). We also consider CEFR condition on the co-local modules, submodules and factors of a CEFR module and direct sum of CEFR modules. Among other results, we prove that the injective hull of a simple module over a commutative Noetherian ring is uniserial if and only if it is CEFR.We investigate modules over a principal ideal ring, and show that all finitely generated torsion modules over a principal ideal domain are CEFR. Also, we show that every module over a commutative Kothe ring is CEFR. We also observe that a ring R is left pseudo morphic if and only if it is CEFR as a left R-module and we obtain some new properties of left pseudo morphic rings.
引用
收藏
页码:841 / 858
页数:18
相关论文
共 21 条
  • [1] CORETRACTABLE MODULES
    Amini, B.
    Ershad, M.
    Sharif, H.
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 86 (03) : 289 - 304
  • [2] [Anonymous], 2003, CAMB TRACT MATH
  • [3] Quasi-morphic rings
    Camillo, V.
    Nicholson, W. K.
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2007, 6 (05) : 789 - 799
  • [4] ON RINGS WHERE LEFT PRINCIPAL IDEALS ARE LEFT PRINCIPAL ANNIHILATORS
    Camillo, V.
    Nicholson, W. K.
    [J]. INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2015, 17 : 199 - 214
  • [5] CAMILLO V, 1978, COMMUN ALGEBRA, V6, P1459, DOI 10.1080/00927877808822299
  • [6] Cohen I. S., 1951, MATH Z, V54, P97
  • [7] Dung N., 2019, Extending Modules
  • [8] CO-EPI-RETRACTABLE MODULES AND CO-PRI RINGS
    Ghorbani, A.
    [J]. COMMUNICATIONS IN ALGEBRA, 2010, 38 (10) : 3589 - 3596
  • [9] Goodearl K. R., 1979, Monographs and Studies in Mathematics, V4
  • [10] ENDOMORPHISM RINGS AND LATTICE ISOMORPHISMS
    KHURI, SM
    [J]. JOURNAL OF ALGEBRA, 1979, 56 (02) : 401 - 408