Small Is Beautiful: Compressing Deep Neural Networks for Partial Domain Adaptation

被引:0
|
作者
Ma, Yuzhe [1 ]
Yao, Xufeng [2 ]
Chen, Ran [2 ]
Li, Ruiyu [3 ]
Shen, Xiaoyong [3 ]
Yu, Bei [2 ]
机构
[1] Hong Kong Univ Sci & Technol Guangzhou, Microelect Thrust, Guangzhou 511400, Peoples R China
[2] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong, Peoples R China
[3] SmartMore Corp Ltd, Hong Kong, Peoples R China
关键词
Training; Computational modeling; Task analysis; Adaptation models; Deep learning; Taylor series; Supervised learning; neural network compression; transfer learning;
D O I
10.1109/TNNLS.2022.3194533
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Domain adaptation is a promising way to ease the costly data labeling process in the era of deep learning (DL). A practical situation is partial domain adaptation (PDA), where the label space of the target domain is a subset of that in the source domain. Although existing methods yield appealing performance in PDA tasks, it is highly presumable that computation overhead exists in deep PDA models since the target is only a subtask of the original problem. In this work, PDA and model compression are seamlessly integrated into a unified training process. The cross-domain distribution divergence is reduced by minimizing a soft-weighted maximum mean discrepancy (SWMMD), which is differentiable and functions as regularization during network training. We use gradient statistics to compress the overparameterized model to identify and prune redundant channels based on the corresponding scaling factors in batch normalization (BN) layers. The experimental results demonstrate that our method can achieve comparable classification performance to state-of-the-art methods on various PDA tasks, with a significant reduction in model size and computation overhead.
引用
收藏
页码:3575 / 3585
页数:11
相关论文
共 50 条
  • [21] Unsupervised deep domain adaptation algorithm for video based human activity recognition via recurrent neural networks
    Zam, Abdulaziz
    Bohlooli, Ali
    Jamshidi, Kamal
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 136
  • [22] A Knee-Guided Evolutionary Algorithm for Compressing Deep Neural Networks
    Zhou, Yao
    Yen, Gary G.
    Yi, Zhang
    IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (03) : 1626 - 1638
  • [23] Deep domain similarity Adaptation Networks for across domain classification
    Chen, Yu
    Yang, Chunling
    Zhang, Yan
    PATTERN RECOGNITION LETTERS, 2018, 112 : 270 - 276
  • [24] Watermarking Deep Neural Networks in Image Processing
    Quan, Yuhui
    Teng, Huan
    Chen, Yixin
    Ji, Hui
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (05) : 1852 - 1865
  • [25] Learning Target-Domain-Specific Classifier for Partial Domain Adaptation
    Ren, Chuan-Xian
    Ge, Pengfei
    Yang, Peiyi
    Yan, Shuicheng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (05) : 1989 - 2001
  • [26] A Review of Single-Source Deep Unsupervised Visual Domain Adaptation
    Zhao, Sicheng
    Yue, Xiangyu
    Zhang, Shanghang
    Li, Bo
    Zhao, Han
    Wu, Bichen
    Krishna, Ravi
    Gonzalez, Joseph E.
    Sangiovanni-Vincentelli, Alberto L.
    Seshia, Sanjit A.
    Keutzer, Kurt
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (02) : 473 - 493
  • [27] Compressing Neural Networks With Inter Prediction and Linear Transformation
    Lee, Kang-Ho
    Bae, Sung-Ho
    IEEE ACCESS, 2021, 9 : 69601 - 69608
  • [28] Orthogonal Deep Neural Networks
    Li, Shuai
    Jia, Kui
    Wen, Yuxin
    Liu, Tongliang
    Tao, Dacheng
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (04) : 1352 - 1368
  • [29] Generalize Deep Neural Networks With Adaptive Regularization for Classifying
    Guo, Kehua
    Tao, Ze
    Zhang, Lingyan
    Hu, Bin
    Kui, Xiaoyan
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (01) : 1216 - 1229
  • [30] CANN: Coupled Approximation Neural Network for Partial Domain Adaptation
    Feng, Cheng
    Zhong, Chaoliang
    Wang, Jie
    Sun, Jun
    Yokota, Yasuto
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 464 - 473