Derivations of triangular matrix rings

被引:4
作者
Vladeva, D., I [1 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, Acad G Bonchev Str Block 8, Sofia 1113, Bulgaria
关键词
Differential algebra; triangular matrices; derivations;
D O I
10.1080/03081087.2022.2063786
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
this paper, the author gives a description of the derivations of UTMn(R), the ring of upper triangular matrices over an associative ring R with identity. The main result states that if D is an arbitrary derivation of the ring UTMn(R) and A is an element of UTMn(R), then there are matrices, such that the derivative D(A) is a linear combination of the values of well-known derivations of these matrices.
引用
收藏
页码:1450 / 1461
页数:12
相关论文
共 20 条
[1]   EXTENSION OF DERIVATIONS TO CENTRAL SIMPLE ALGEBRAS [J].
AMITSUR, SA .
COMMUNICATIONS IN ALGEBRA, 1982, 10 (08) :797-803
[2]  
Birkenmeier G. F., 2013, Extensions of Rings and Modules
[3]   IDEMPOTENTS AND COMPLETELY SEMIPRIME IDEALS [J].
BIRKENMEIER, GF .
COMMUNICATIONS IN ALGEBRA, 1983, 11 (06) :567-580
[4]   DERIVATIONS OF GENERALIZED QUASI-MATRIX RINGS [J].
BURKOV, VD .
MATHEMATICAL NOTES, 1978, 24 (1-2) :563-569
[5]   A note on compositions of derivations of prime rings [J].
Chebotar, MA ;
Lee, PH .
COMMUNICATIONS IN ALGEBRA, 2003, 31 (06) :2965-2969
[6]   ON COMPOSITIONS OF DERIVATIONS OF PRIME-RINGS [J].
CHUANG, CL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 108 (03) :647-652
[7]   DERIVATIONS OF UPPER-TRIANGULAR MATRIX-RINGS [J].
COELHO, SP ;
MILIES, CP .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 187 :263-267
[8]   DERIVATIONS IN PRIME-RINGS [J].
FELZENSZWALB, B .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 84 (01) :16-20
[9]  
Herstein I.N., 1968, Noncommutative Rings, V15
[10]   Derivations of the Lie algebra of infinite strictly upper triangular matrices over a commutative ring [J].
Holubowski, Waldemar ;
Kashuba, Iryna ;
Zurek, Sebastian .
COMMUNICATIONS IN ALGEBRA, 2017, 45 (11) :4679-4685