Rational matrix digit systems

被引:1
|
作者
Jankauskas, Jonas [1 ,2 ]
Thuswaldner, Joerg M. [2 ]
机构
[1] Vilnius Univ, Fac Math & Informat, Inst Math, Naugarduko G 24, LT-03225 Vilnius, Lithuania
[2] Univ Leoben, Math & Stat, Leoben, Austria
基金
奥地利科学基金会;
关键词
Digit expansion; matrix number systems; dynamical systems; convex digit sets; lattices; SELF-AFFINE TILES;
D O I
10.1080/03081087.2022.2067813
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a d x d matrix with rational entries which has no eigenvalue lambda is an element of C of absolute value vertical bar lambda vertical bar < 1 and let Z(d) [A] be the smallest nontrivial A-invariant Z-module. We lay down a theoretical framework for the construction of digit systems (A,D), where D subset of Z(d) [A] finite, that admit finite expansions of the form x = d(0) + Ad(1) + ... +A(l-1) d(l-1) (l is an element of N, d(0), ... ,d(l-1) is an element of D) for every element x is an element of Z(d) [A]. We put special emphasis on the explicit computation of small digit sets D that admit this property for a given matrix A, using techniques from matrix theory, convex geometry, and the Smith Normal Form. Moreover, we provide a new proof of general results on this finiteness property and recover analogous finiteness results for digit systems in number fields a unified way.
引用
收藏
页码:1606 / 1639
页数:34
相关论文
共 50 条
  • [41] Rational Reidemeister trace of an outer automorphism of finite order
    Smrekar, Jaka
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2023, 227 (07)
  • [42] DETERMINATION OF ALL RATIONAL PREPERIODIC POINTS FOR MORPHISMS OF PN
    Hutz, Benjamin
    MATHEMATICS OF COMPUTATION, 2015, 84 (291) : 289 - 308
  • [43] Matrix Formalism of the Degeneration Control Problem of Multichannel Dynamical Systems under Vector Stochastic Exogenous Impact of the Colored Noise Type
    Dudarenko, N. A.
    Ushakov, A. V.
    JOURNAL OF AUTOMATION AND INFORMATION SCIENCES, 2013, 45 (06) : 36 - 47
  • [44] Primitive rational points on expanding horospheres in Hilbert modular surfaces
    Luethi, Manuel
    JOURNAL OF NUMBER THEORY, 2021, 225 : 327 - 359
  • [45] Boundedly rational route choice behavior: A review of models and methodologies
    Di, Xuan
    Liu, Henry X.
    TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2016, 85 : 142 - 179
  • [46] A discrete rational adjustment process of link flows in traffic networks
    Guo, Ren-Yong
    Yang, Hai
    Huang, Hai-Jun
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2013, 34 : 121 - 137
  • [47] MINIMALITY OF p-ADIC RATIONAL MAPS WITH GOOD REDUCTION
    Fan, Aihua
    Fan, Shilei
    Liao, Lingmin
    Wang, Yuefei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (06) : 3161 - 3182
  • [48] Rational approximation of maximal commutative subgroups of GL(n, R)
    Karpenkov, Oleg N.
    Vershik, Anatoly M.
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2010, 7 (01) : 241 - 263
  • [49] ABOUT THE DECOMPOSITION OF RATIONAL SERIES IN NONCOMMUTATIVE VARIABLES INTO SIMPLE SERIES
    Foursov, Mikhail V.
    Hespel, Christiane
    ICINCO 2009: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL 3, 2009, : 214 - +
  • [50] Fractal tiles associated with shift radix systems
    Berthe, Valerie
    Siegel, Anne
    Steiner, Wolfgang
    Surer, Paul
    Thuswaldner, Joerg M.
    ADVANCES IN MATHEMATICS, 2011, 226 (01) : 139 - 175