Rational matrix digit systems

被引:1
|
作者
Jankauskas, Jonas [1 ,2 ]
Thuswaldner, Joerg M. [2 ]
机构
[1] Vilnius Univ, Fac Math & Informat, Inst Math, Naugarduko G 24, LT-03225 Vilnius, Lithuania
[2] Univ Leoben, Math & Stat, Leoben, Austria
基金
奥地利科学基金会;
关键词
Digit expansion; matrix number systems; dynamical systems; convex digit sets; lattices; SELF-AFFINE TILES;
D O I
10.1080/03081087.2022.2067813
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a d x d matrix with rational entries which has no eigenvalue lambda is an element of C of absolute value vertical bar lambda vertical bar < 1 and let Z(d) [A] be the smallest nontrivial A-invariant Z-module. We lay down a theoretical framework for the construction of digit systems (A,D), where D subset of Z(d) [A] finite, that admit finite expansions of the form x = d(0) + Ad(1) + ... +A(l-1) d(l-1) (l is an element of N, d(0), ... ,d(l-1) is an element of D) for every element x is an element of Z(d) [A]. We put special emphasis on the explicit computation of small digit sets D that admit this property for a given matrix A, using techniques from matrix theory, convex geometry, and the Smith Normal Form. Moreover, we provide a new proof of general results on this finiteness property and recover analogous finiteness results for digit systems in number fields a unified way.
引用
收藏
页码:1606 / 1639
页数:34
相关论文
共 50 条
  • [31] Topology of planar self-affine tiles with collinear digit set
    Akiyama, Shigeki
    Loridant, Benoit
    Thuswaldner, Joerg
    JOURNAL OF FRACTAL GEOMETRY, 2021, 8 (01) : 53 - 93
  • [32] NON-COMMUTATIVE DIGIT EXPANSIONS FOR ARITHMETIC ON SUPERSINGULAR ELLIPTIC CURVES
    Mazzoli, M.
    ACTA MATHEMATICA HUNGARICA, 2016, 149 (01) : 149 - 159
  • [33] Bipartite Consensus for Second-Order Multiagent Systems With Matrix-Weighted Signed Network
    Miao, Suoxia
    Su, Housheng
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (12) : 13038 - 13047
  • [34] An oligopoly model with rational and imitation rules
    Baiardi, Lorenzo Cerboni
    Naimzada, Ahmad K.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2019, 156 : 254 - 278
  • [35] Adelic perturbation of rational functions and applications
    Boudreau, Felix Baril
    Holmes, Erik
    Nguyen, Khoa D.
    MATHEMATISCHE ANNALEN, 2025, : 2253 - 2275
  • [36] Rational Ehrhart quasi-polynomials
    Linke, Eva
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (07) : 1966 - 1978
  • [37] A global rational Arnoldi method for model reduction
    Abidi, O.
    Hached, M.
    Jbilou, K.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 325 : 175 - 187
  • [38] Robust Dissipative Filtering for Discrete-time Markov Jump Lur'e Systems with Uncertain Transition Probability Matrix
    Zhang, Yujie
    Ou, Yongsheng
    Wu, Xinyu
    Feng, Wei
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 4362 - 4367
  • [39] Gradient descent-based parameter-free methods for solving coupled matrix equations and studying an application in dynamical systems
    Shirilord, Akbar
    Dehghan, Mehdi
    APPLIED NUMERICAL MATHEMATICS, 2025, 212 : 29 - 59
  • [40] Gaps on the intersection numbers of sections on a rational elliptic surface
    Costa, Renato Dias
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2024, 65 (03): : 573 - 599