Rational matrix digit systems

被引:1
|
作者
Jankauskas, Jonas [1 ,2 ]
Thuswaldner, Joerg M. [2 ]
机构
[1] Vilnius Univ, Fac Math & Informat, Inst Math, Naugarduko G 24, LT-03225 Vilnius, Lithuania
[2] Univ Leoben, Math & Stat, Leoben, Austria
基金
奥地利科学基金会;
关键词
Digit expansion; matrix number systems; dynamical systems; convex digit sets; lattices; SELF-AFFINE TILES;
D O I
10.1080/03081087.2022.2067813
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a d x d matrix with rational entries which has no eigenvalue lambda is an element of C of absolute value vertical bar lambda vertical bar < 1 and let Z(d) [A] be the smallest nontrivial A-invariant Z-module. We lay down a theoretical framework for the construction of digit systems (A,D), where D subset of Z(d) [A] finite, that admit finite expansions of the form x = d(0) + Ad(1) + ... +A(l-1) d(l-1) (l is an element of N, d(0), ... ,d(l-1) is an element of D) for every element x is an element of Z(d) [A]. We put special emphasis on the explicit computation of small digit sets D that admit this property for a given matrix A, using techniques from matrix theory, convex geometry, and the Smith Normal Form. Moreover, we provide a new proof of general results on this finiteness property and recover analogous finiteness results for digit systems in number fields a unified way.
引用
收藏
页码:1606 / 1639
页数:34
相关论文
共 50 条
  • [21] A Proof of First Digit Law from Laplace Transform
    Gong, Mingshu
    Ma, Bo-Qiang
    CHINESE PHYSICS LETTERS, 2019, 36 (07)
  • [22] Earthquake source parameters that display the first digit phenomenon
    Toledo, P. A.
    Riquelme, S. R.
    Campos, J. A.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2015, 22 (05) : 625 - 632
  • [23] CLASSIFICATION OF TILE DIGIT SETS AS PRODUCT-FORMS
    Lai, Chun-Kit
    Lau, Ka-Sing
    Rao, Hui
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (01) : 623 - 644
  • [24] Hausdorff dimension of real numbers with bounded digit averages
    Cesaratto, Eda
    Vallee, Brigitte
    ACTA ARITHMETICA, 2006, 125 (02) : 115 - 162
  • [25] Reinforcement Learning of Structured Stabilizing Control for Linear Systems With Unknown State Matrix
    Mukherjee, Sayak
    Vu, Thanh Long
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (03) : 1746 - 1752
  • [26] A model reduction method in large scale dynamical systems using an extended-rational block Arnoldi method
    M. A. Hamadi
    K. Jbilou
    A. Ratnani
    Journal of Applied Mathematics and Computing, 2022, 68 : 271 - 293
  • [27] A model reduction method in large scale dynamical systems using an extended-rational block Arnoldi method
    Hamadi, M. A.
    Jbilou, K.
    Ratnani, A.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (01) : 271 - 293
  • [28] Non-expansive matrix number systems with bases similar to certain Jordan blocks
    Caldwell, Joshua W.
    Hare, Kevin G.
    Vavra, Tomas
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2024, 202
  • [29] A Grammian matrix and controllability study of fractional delay integro-differential Langevin systems
    Hammad, Hasanen A.
    Dafaalla, Mohammed E.
    Nisar, Kottakkaran Sooppy
    AIMS MATHEMATICS, 2024, 9 (06): : 15469 - 15485
  • [30] Non-commutative digit expansions for arithmetic on supersingular elliptic curves
    M. Mazzoli
    Acta Mathematica Hungarica, 2016, 149 : 149 - 159