Rational matrix digit systems

被引:1
|
作者
Jankauskas, Jonas [1 ,2 ]
Thuswaldner, Joerg M. [2 ]
机构
[1] Vilnius Univ, Fac Math & Informat, Inst Math, Naugarduko G 24, LT-03225 Vilnius, Lithuania
[2] Univ Leoben, Math & Stat, Leoben, Austria
基金
奥地利科学基金会;
关键词
Digit expansion; matrix number systems; dynamical systems; convex digit sets; lattices; SELF-AFFINE TILES;
D O I
10.1080/03081087.2022.2067813
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a d x d matrix with rational entries which has no eigenvalue lambda is an element of C of absolute value vertical bar lambda vertical bar < 1 and let Z(d) [A] be the smallest nontrivial A-invariant Z-module. We lay down a theoretical framework for the construction of digit systems (A,D), where D subset of Z(d) [A] finite, that admit finite expansions of the form x = d(0) + Ad(1) + ... +A(l-1) d(l-1) (l is an element of N, d(0), ... ,d(l-1) is an element of D) for every element x is an element of Z(d) [A]. We put special emphasis on the explicit computation of small digit sets D that admit this property for a given matrix A, using techniques from matrix theory, convex geometry, and the Smith Normal Form. Moreover, we provide a new proof of general results on this finiteness property and recover analogous finiteness results for digit systems in number fields a unified way.
引用
收藏
页码:1606 / 1639
页数:34
相关论文
共 50 条
  • [1] Digit systems over commutative rings
    Scheicher, Klaus
    Surer, Paul
    Thuswaldner, Joerg M.
    Van de Woestijne, Christiaan E.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2014, 10 (06) : 1459 - 1483
  • [2] ε-shift radix systems and radix representations with shifted digit sets
    Surer, Paul
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2009, 74 (1-2): : 19 - 43
  • [3] All doubly coprime factorizations of a general rational matrix
    Oara, Cristian
    Sabau, Serban
    AUTOMATICA, 2009, 45 (08) : 1960 - 1964
  • [4] Approximate Reductions of Rational Dynamical Systems in CLUE
    Jimenez-Pastor, Antonio
    Leguizamon-Robayo, Alexander
    Tschaikowski, Max
    Vandin, Andrea
    COMPUTATIONAL METHODS IN SYSTEMS BIOLOGY, CMSB 2024, 2024, 14971 : 108 - 116
  • [5] Exact Linear Reduction for Rational Dynamical Systems
    Jimenez-Pastor, Antonio
    Jacob, Joshua Paul
    Pogudin, Gleb
    COMPUTATIONAL METHODS IN SYSTEMS BIOLOGY, CMSB 2022, 2022, 13447 : 198 - 216
  • [6] Hamiltonian reductions in matrix Painleve systems
    Bershtein, Mikhail
    Grigorev, Andrei
    Shchechkin, Anton
    LETTERS IN MATHEMATICAL PHYSICS, 2023, 113 (02)
  • [7] CHARACTERIZATION OF A CLASS OF PLANAR SELF-AFFINE TILE DIGIT SETS
    An, Li-Xiang
    Lau, Ka-Sing
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (11) : 7627 - 7650
  • [8] Conditional random matrix ensembles and the stability of dynamical systems
    Kirk, Paul
    Rolando, Delphine M. Y.
    MacLean, Adam L.
    Stumpf, Michael P. H.
    NEW JOURNAL OF PHYSICS, 2015, 17
  • [9] Dynamical systems on graphs through the signless Laplacian matrix
    Giunti, B.
    Perri, V.
    RICERCHE DI MATEMATICA, 2018, 67 (02) : 533 - 547
  • [10] Consensus of Matrix-Weighted Hybrid Multiagent Systems
    Miao, Suoxia
    Su, Housheng
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (01) : 668 - 678