Utilizing Big Data analytics and electronic health record data in HIV prevention, treatment, and care research: a literature review

被引:7
作者
Qiao, Shan [1 ,2 ,3 ]
Li, Xiaoming [1 ,2 ,3 ]
Olatosi, Bankole [1 ,2 ,4 ]
Young, Sean D. [5 ]
机构
[1] South Carolina SmartState Ctr Healthcare Qual CHQ, Columbia, SC USA
[2] Univ South Carolina, Big Data Hlth Sci Ctr, Columbia, SC 29208 USA
[3] Univ South Carolina, Dept Hlth Promot Educ & Behav, Arnold Sch Publ Hlth, Columbia, SC 29208 USA
[4] Univ South Carolina, Arnold Sch Publ Hlth, Dept Hlth Serv Policy & Management, Columbia, SC 29208 USA
[5] Univ Calif Irvine, Dept Emergency Med, Dept Informat, Inst Predict Technol, Irvine, CA USA
来源
AIDS CARE-PSYCHOLOGICAL AND SOCIO-MEDICAL ASPECTS OF AIDS/HIV | 2024年 / 36卷 / 05期
基金
美国国家卫生研究院;
关键词
Big Data; Big Data analytics; electronic health records; HIV; prediction model; MEDICAL-RECORD; PREDICTING RESPONSE; DRUG-RESISTANCE; EMERGENCY; IDENTIFICATION; INFORMATION; STRATEGIES; THERAPIES; ALGORITHM; NETWORKS;
D O I
10.1080/09540121.2021.1948499
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Propelled by the transformative power of modern information and communication technologies, digitalization of data, and the increasing affordability of high-performance computing, Big Data science has brought forth revolutionary advancement in many areas of business, industry, health, and medicine. The HIV research and care service community is no exception to the benefits from the availability and utilization of Big Data analytics. Electronic health record (EHR) data (e.g., administrative and billing data, electronic medical records, or other digital records of information pertinent to individual or population health) are an essential source of health and disease outcome data because of the large amount of real-world, comprehensive, and often longitudinal data, which provide a good opportunity for leveraging advanced Big Data analytics in addressing challenges in HIV prevention, treatment, and care. This review focuses on studies that apply Big Data analytics to EHR data with aims to synthesize the HIV-related issues that EHR data studies can tackle, identify challenges in the utilization of EHR data in HIV research and practice, and discuss future needs and directions that can realize the promising potential role of Big Data in ending the HIV epidemic.
引用
收藏
页码:583 / 603
页数:21
相关论文
共 76 条
[1]   Algorithmic prediction of HIV status using nation-wide electronic registry data [J].
Ahlstrom, Magnus G. ;
Ronit, Andreas ;
Omland, Lars Haukali ;
Vedel, Soren ;
Obel, Niels .
ECLINICALMEDICINE, 2019, 17
[2]   Comparison of Classifier Fusion Methods for Predicting Response to Anti HIV-1 Therapy [J].
Altmann, Andre ;
Rosen-Zvi, Michal ;
Prosperi, Mattia ;
Aharoni, Ehud ;
Neuvirth, Hani ;
Schuelter, Eugen ;
Buech, Joachim ;
Struck, Daniel ;
Peres, Yardena ;
Incardona, Francesca ;
Soennerborg, Anders ;
Kaiser, Rolf ;
Zazzi, Maurizio ;
Lengauer, Thomas .
PLOS ONE, 2008, 3 (10)
[3]  
[Anonymous], 2018, NIH STRAT PLAN DAT S
[4]   Classification of radiology reports for falls in an HIV study cohort [J].
Bates, Jonathan ;
Fodeh, Samah J. ;
Brandt, Cynthia A. ;
Womack, Julie A. .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2016, 23 (E1) :E113-E117
[5]   Protecting the confidentiality and security of personal health information in low- and middle-income countries in the era of SDGs and Big Data [J].
Beck, Eduard J. ;
Gill, Wayne ;
De Lay, Paul R. .
GLOBAL HEALTH ACTION, 2016, 9 :1-7
[6]   Computational methods for the design of effective therapies against drug resistant HIV strains [J].
Beerenwinkel, N ;
Sing, T ;
Lengauer, T ;
Rahnenführer, J ;
Roomp, K ;
Savenkov, I ;
Fischer, R ;
Hoffmann, D ;
Selbig, J ;
Korn, K ;
Walter, H ;
Berg, T ;
Braun, P ;
Fätkenheuer, G ;
Oette, M ;
Rockstroh, J ;
Kupfer, B ;
Kaiser, R ;
Däumer, M .
BIOINFORMATICS, 2005, 21 (21) :3943-3950
[7]  
Benbow N., 2020, ITERATIVE PROCESS IN
[8]   Super learner analysis of real-time electronically monitored adherence to antiretroviral therapy under constrained optimization and comparison to non-differentiated care approaches for persons living with HIV in rural Uganda [J].
Benitez, Alejandra E. ;
Musinguzi, Nicholas ;
Bangsberg, David R. ;
Bwana, Mwebesa B. ;
Muzoora, Conrad ;
Hunt, Peter W. ;
Martin, Jeffrey N. ;
Haberer, Jessica E. ;
Petersen, Maya L. .
JOURNAL OF THE INTERNATIONAL AIDS SOCIETY, 2020, 23 (03)
[9]   A comparative study of logistic regression based machine learning techniques for prediction of early virological suppression in antiretroviral initiating HIV patients [J].
Bisaso, Kuteesa R. ;
Karungi, Susan A. ;
Kiragga, Agnes ;
Mukonzo, Jackson K. ;
Castelnuovo, Barbara .
BMC MEDICAL INFORMATICS AND DECISION MAKING, 2018, 18
[10]   A survey of machine learning applications in HIV clinical research and care [J].
Bisaso, Kuteesa R. ;
Anguzu, Godwin T. ;
Karungi, Susan A. ;
Kiragga, Agnes ;
Castelnuovo, Barbara .
COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 91 :366-371