Machine learning model and nomogram to predict the risk of heart failure hospitalization in peritoneal dialysis patients

被引:2
作者
Xu, Liping [1 ]
Cao, Fang [2 ,3 ]
Wang, Lian [2 ]
Liu, Weihua [2 ]
Gao, Meizhu [2 ]
Zhang, Li [2 ]
Hong, Fuyuan [2 ,4 ]
Lin, Miao [2 ,4 ]
机构
[1] Xiamen Med Coll, Affiliated Hosp 2, Dept Radiol, Xiamen, Peoples R China
[2] Fujian Med Univ, Fujian Prov Clin Coll, Fujian Prov Hosp, Dept Nephrol, Fuzhou, Fujian, Peoples R China
[3] Fujian Med Univ, Fujian Prov Hosp, Prov Clin Coll, Dept Nursing, Fuzhou, Fujian, Peoples R China
[4] Fujian Med Univ, Fujian Prov Hosp, Prov Clin Coll, Dept nephrol, Fuzhou 350001, Peoples R China
关键词
Peritoneal dialysis; machine learning; all-cause mortality; heart failure; complications; MORTALITY; HEMODIALYSIS; VALIDATION; OUTCOMES; COMORBIDITY; ACCURACY; SURVIVAL;
D O I
10.1080/0886022X.2024.2324071
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
IntroductionThe study presented here aimed to establish a predictive model for heart failure (HF) and all-cause mortality in peritoneal dialysis (PD) patients with machine learning (ML) algorithm.MethodsWe retrospectively included 1006 patients who initiated PD from 2010 to 2016. XGBoost, random forest (RF), and AdaBoost were used to train models for assessing risk for 1-year and 5-year HF hospitalization and mortality. The performance was validated using fivefold cross-validation. The optimal ML algorithm was used to construct the models to predictive the risk of the HF and all-cause mortality. The prediction performance of ML methods and Cox regression was compared.ResultsOver a median follow-up of 49 months. Two hundred and ninety-eight patients developed HF required hospitalization; 199 patients died during the follow-up. The RF model (AUC = 0.853) was the best performing model for predicting HF, and the XGBoost model (AUC = 0.871) was the best model for predicting mortality. Baseline moderate or severe renal disease, systolic blood pressure (SBP), body mass index (BMI), age, Charlson Comorbidity Index (CCI) score were strongly associated with HF hospitalization, whereas age, CCI score, creatinine, age, high-density lipoprotein cholesterol (HDL-C), total cholesterol, baseline estimated glomerular filtration rate (eGFR) were the most significant predictors of mortality. For all the above endpoints, the ML models demonstrated better discrimination than Cox regression.ConclusionsWe developed and validated a novel method to predict the risk factors of HF and all-cause mortality that integrates readily available clinical, laboratory, and electrocardiographic variables to predict the risk of HF among PD patients.
引用
收藏
页数:10
相关论文
共 41 条
[1]   Machine Learning Prediction of Mortality and Hospitalization in Heart Failure With Preserved Ejection Fraction [J].
Angraal, Suveen ;
Mortazavi, Bobak J. ;
Gupta, Aakriti ;
Khera, Rohan ;
Ahmad, Tariq ;
Desai, Nihar R. ;
Jacoby, Daniel L. ;
Masoudi, Frederick A. ;
Spertus, John A. ;
Krumholz, Harlan M. .
JACC-HEART FAILURE, 2020, 8 (01) :12-21
[2]   Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram [J].
Attia, Zachi I. ;
Kapa, Suraj ;
Lopez-Jimenez, Francisco ;
McKie, Paul M. ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Enriquez-Sarano, Maurice ;
Noseworthy, Peter A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Friedman, Paul A. .
NATURE MEDICINE, 2019, 25 (01) :70-+
[3]   Machine learning in heart failure: ready for prime time [J].
Awan, Saqib Ejaz ;
Sohel, Ferdous ;
Sanfilippo, Frank Mario ;
Bennamoun, Mohammed ;
Dwivedi, Girish .
CURRENT OPINION IN CARDIOLOGY, 2018, 33 (02) :190-195
[4]   Prognostic Value of the Physical Examination in Patients With Heart Failure and Atrial Fibrillation [J].
Caldentey, Guillem ;
Khairy, Paul ;
Roy, Denis ;
Leduc, Hugues ;
Talajic, Mario ;
Racine, Normand ;
White, Michel ;
O'Meara, Eileen ;
Guertin, Marie-Claude ;
Rouleau, Jean L. ;
Ducharme, Anique .
JACC-HEART FAILURE, 2014, 2 (01) :15-23
[5]   A NEW METHOD OF CLASSIFYING PROGNOSTIC CO-MORBIDITY IN LONGITUDINAL-STUDIES - DEVELOPMENT AND VALIDATION [J].
CHARLSON, ME ;
POMPEI, P ;
ALES, KL ;
MACKENZIE, CR .
JOURNAL OF CHRONIC DISEASES, 1987, 40 (05) :373-383
[6]   Prediction and Risk Stratification of Kidney Outcomes in Iga Nephropathy [J].
Chen, Tingyu ;
Li, Xiang ;
Li, Yingxue ;
Xia, Eryu ;
Qin, Yong ;
Liang, Shaoshan ;
Xu, Feng ;
Liang, Dandan ;
Zeng, Caihong ;
Liu, Zhihong .
AMERICAN JOURNAL OF KIDNEY DISEASES, 2019, 74 (03) :300-309
[7]   Predicting First-Year Mortality in Incident Dialysis Patients with End-Stage Renal Disease - The UREA5 Study [J].
Chua, Horng-Ruey ;
Lau, Titus ;
Luo, Nan ;
Ma, Valerie ;
Teo, Boon-Wee ;
Haroon, Sabrina ;
Choy, Kwan-Loong ;
Lim, Yoke-Ching ;
Chng, Wei-Qiang ;
Ong, Li-Zhen ;
Wong, Tsz-Yeung ;
Lee, Evan J. .
BLOOD PURIFICATION, 2014, 37 (02) :85-92
[8]   US Renal Data System 2011 Annual Data Report [J].
Collins, Allan J. ;
Foley, Robert N. ;
Chavers, Blanche ;
Gilbertson, David ;
Herzog, Charles ;
Johansen, Kirsten ;
Kasiske, Bertram ;
Kutner, Nancy ;
Liu, Jiannong ;
St Peter, Wendy ;
Guo, Haifeng ;
Gustafson, Sally ;
Heubner, Brooke ;
Lamb, Kenneth ;
Li, Shuling ;
Li, Suying ;
Peng, Yi ;
Qiu, Yang ;
Roberts, Tricia ;
Skeans, Melissa ;
Snyder, Jon ;
Solid, Craig ;
Thompson, Bryn ;
Wang, Changchun ;
Weinhandl, Eric ;
Zaun, David ;
Arko, Cheryl ;
Chen, Shu-Cheng ;
Daniels, Frank ;
Ebben, James ;
Frazier, Eric ;
Hanzlik, Christopher ;
Johnson, Roger ;
Sheets, Daniel ;
Wang, Xinyue ;
Forrest, Beth ;
Constantini, Edward ;
Everson, Susan ;
Eggers, Paul ;
Agodoa, Lawrence .
AMERICAN JOURNAL OF KIDNEY DISEASES, 2012, 59 (01) :EVII-E418
[9]   Age affects the prognostic impact of diabetes in chronic heart failure [J].
Cunha, Filipe Manuel ;
Pereira, Joana ;
Ribeiro, Ana ;
Amorim, Marta ;
Silva, Sergio ;
Araujo, Jose Paulo ;
Leite-Moreira, Adelino ;
Bettencourt, Paulo ;
Lourenco, Patricia .
ACTA DIABETOLOGICA, 2018, 55 (03) :271-278
[10]   General cardiovascular risk profile for use in primary care - The Framingham Heart Study [J].
D'Agostino, Ralph B. ;
Vasan, Ramachandran S. ;
Pencina, Michael J. ;
Wolf, Philip A. ;
Cobain, Mark ;
Massaro, Joseph M. ;
Kannel, William B. .
CIRCULATION, 2008, 117 (06) :743-753