Prominence of Fe on Cu/ZnO/ZrO2 catalyst for methanol synthesis from CO2: Material preparation, performance demonstration, and kinetic analysis

被引:10
|
作者
Kanuri, Suresh [1 ]
Singh, Satyapaul A. [1 ]
Dinda, Srikanta [1 ]
机构
[1] Birla Inst Technol & Sci BITS Pilani, Dept Chem Engn, Hyderabad Campus, Hyderabad 500078, India
关键词
Methanol synthesis; CO; 2; hydrogenation; ZnO/ZrO 2 supported Fe/Cu catalyst; Reaction kinetics; In-situ DRIFTS; CARBON-DIOXIDE; HYDROGENATION; CU; COPPER; ZRO2; SELECTIVITY; SITES; STATE;
D O I
10.1016/j.ces.2023.119661
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A sequence of ZnO/ZrO2-supported Fe/Cu catalysts were prepared and tested for methanol synthesis performance from CO2 using a high-pressure flow reactor. The Fe-containing catalysts showed a greater impact on methanol synthesis than the ZnO/ZrO2-supported Cu and Fe/Cu catalysts. The presence of the tetragonal-ZrO2 phase in the support is highly selective towards methanol formation. A catalyst containing 30 wt% Fe showed a uniform distribution of nanospheres and more oxygen vacancies. H2-TPR investigation revealed that the Fe catalyst offered strong interactions between iron oxides and ZrO2 support. At 250 degrees C and 30 bar, the Fe incorporated catalyst showed a remarkable performance with 18.7 % CO2 conversion and 53.8 % methanol selectivity. The catalyst showed excellent thermo-chemical stability under time-on-stream conditions. In-situ DRIFTS analysis revealed the formation of formate and CO intermediates during methanol formation. A single site kinetic model agrees well with the experimental results.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Preparation of Cu/ZrO2 catalysts for methanol synthesis from CO2/H2
    Liu, Xinmei
    Bai, Shaofen
    Zhuang, Huidong
    Yan, Zifeng
    FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING, 2012, 6 (01) : 47 - 52
  • [2] The Influence of the Precipitation/Ageing Temperature on a Cu/ZnO/ZrO2 Catalyst for Methanol Synthesis from H2 and CO2
    Frei, Elias
    Schaadt, Achim
    Ludwig, Thilo
    Hillebrecht, Harald
    Krossing, Ingo
    CHEMCATCHEM, 2014, 6 (06) : 1721 - 1730
  • [3] Effect of Reflux Time on the Performance of the Cu/ZrO2 Catalyst for CO2 Hydrogenation to Methanol
    Dai, Wenhua
    Meng, Xin
    Xu, Bowen
    Zhao, Rui
    Jin, Daoming
    Xu, Fan
    Yang, Dandan
    Xin, Zhong
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (18) : 9417 - 9426
  • [4] Catalytic Performance of Cu/ZnO/Al2O3/ZrO2 for Slurry Methanol Synthesis from CO2 Hydrogenation: Effect of Cu/Zn Molar Ratio
    Shaharun, Salina
    Shaharun, Maizatul S.
    Shah, Mohamad F. M.
    Amer, Nurul A.
    SAINS MALAYSIANA, 2018, 47 (01): : 207 - 214
  • [5] Modulation of Al2O3 and ZrO2 composite in Cu/ZnO-based catalysts with enhanced performance for CO2 hydrogenation to methanol
    Wang, Jianwen
    Song, Yihui
    Li, Jing
    Liu, Fengdong
    Wang, Jiajing
    Lv, Jing
    Wang, Shiwei
    Li, Maoshuai
    Bao, Xiaojun
    Ma, Xinbin
    APPLIED CATALYSIS A-GENERAL, 2024, 674
  • [6] Experimental and kinetic modeling of CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts
    Dong, Meirong
    Ning, Jingyun
    Liu, Hongchuan
    Xiong, Junchang
    Yang, Junshu
    Huang, Zehua
    Liang, Youcai
    Lu, Jidong
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2024, 21 (15) : 3573 - 3587
  • [7] Effects of ZrO2 on the Performance of CuO-ZnO-TiO2-ZrO2 Catalysts Used in Methanol Synthesis from CO2 Hydrogenation
    Zhao, Yunpeng
    Jia, Lihua
    Jing, Tao
    Sun, Dezhi
    Chung, Jong Shik
    ASIAN JOURNAL OF CHEMISTRY, 2012, 24 (05) : 2245 - 2248
  • [8] Influence of ZrO2 Structure and Copper Electronic State on Activity of Cu/ZrO2 Catalysts in Methanol Synthesis from CO2
    Samson, K.
    Sliwa, M.
    Socha, R. P.
    Gora-Marek, K.
    Mucha, D.
    Rutkowska-Zbik, D.
    Paul, J-F.
    Ruggiero-Mikolajczyk, M.
    Grabowski, R.
    Sloczynski, J.
    ACS CATALYSIS, 2014, 4 (10): : 3730 - 3741
  • [9] Structure and performance of Cu/ZrO2 catalyst for the synthesis of methanol from CO2 hydrogenation
    Zhuang H.-D.
    Bai S.-F.
    Liu X.-M.
    Yan Z.-F.
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2010, 38 (04): : 462 - 467
  • [10] Effect of preparation methods of ZnO/ZrO2 catalysts for methanol synthesis from CO2 hydrogenation
    Yuying Yang
    Guihui Wang
    Miao Gong
    Fuzhen Zhao
    Reaction Kinetics, Mechanisms and Catalysis, 2022, 135 : 2993 - 3005