Prediction of the Melting Point of Ionic Liquids with Clustering and Noeuroevolution

被引:0
|
作者
Frausto-Solis, Juan [1 ]
Gonzalez-Barbosa, Juan Javier [1 ]
Cerecedo-Cordoba, Jorge Alberto [1 ]
Sanchez-Hernandez, Juan Paulo [2 ]
Diaz-Parra, Ocotlan [3 ]
Castilla-Valdez, Guadalupe [1 ]
机构
[1] Tecnol Nacl Mex Inst Tecnol Ciudad Madero, Cuidad Madero, Tamaulipas, Mexico
[2] Univ Politecn Estado Morelos, Jiutepec, Morelos, Mexico
[3] Univ Politecn Pachuca, Pachuca, Mexico
关键词
Ionic Liquids; Clustering analysis; Neuroevolution; Neural Networks; Machine Learning;
D O I
10.61467/2007.1558.2023.v14i3.384
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Ionic liquids (ILs) are salts with a wide liquid temperature range and low melting points and can be fine-tuned to have specific physicochemical properties by the selection of their anion and cation. However, having a physical synthesis of multiple ILs for testing purposes can be expensive. For this reason, an insilico estimation of physicochemical properties is desired. The selection of these components is limited by the low precision offered by state-of-the-art predictive models. In this paper, we explore the prediction of melting points with clustering algorithms and a novel Neuroevolution approach. We focused our design on simplicity. We concluded that performing clustering analysis in a previous phase of the model generation improves the estimation accuracy of the melting point which is validated in experimentation made in-silico.
引用
收藏
页码:24 / 30
页数:7
相关论文
共 50 条
  • [31] Melting properties of molten salts and ionic liquids. Chemical homology, correlation, and prediction
    Valderrama, Jose O.
    Campusano, Richard A.
    COMPTES RENDUS CHIMIE, 2016, 19 (05) : 654 - 664
  • [32] IN SILICO PREDICTION OF MELTING POINTS OF IONIC LIQUIDS BY USING MULTILAYER PERCEPTRON NEURAL NETWORKS
    Fatemi, Mohammad H.
    Izadian, Parisa
    JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY, 2012, 11 (01): : 127 - 141
  • [33] MELTING-POINT BATH LIQUIDS
    HARTWELL, JL
    ANALYTICAL CHEMISTRY, 1948, 20 (04) : 374 - 376
  • [34] Generating Ionic Liquids from Ionic Solids: An Investigation of the Melting Behavior of Binary Mixtures of Ionic Liquids
    Maximo, Guilherme J.
    Santos, Ricardo J. B. N.
    Brandao, Paula
    Esperanca, Jose M. S. S.
    Costa, Mariana C.
    Meirelles, Antonio J. A.
    Freire, Mara G.
    Coutinho, Joao A. P.
    CRYSTAL GROWTH & DESIGN, 2014, 14 (09) : 4270 - 4277
  • [35] Immobilization and melting point depression of imidazolium ionic liquids on the surface of nano-SiOx particles
    Liu, Yusheng
    Wu, Guozhong
    Fu, Haiying
    Jiang, Zheng
    Chen, Shimou
    Sha, Maolin
    DALTON TRANSACTIONS, 2010, 39 (13) : 3190 - 3194
  • [36] Effect of alkyl-group flexibility on the melting point of imidazolium-based ionic liquids
    Bernardino, Kalil
    Zhang, Yong
    Ribeiro, Mauro C. C.
    Maginn, Edward J.
    JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (04):
  • [37] Predicting melting point of ionic liquids using QSPR approach: Literature review and new models
    Paduszynski, Kamil
    Klebowski, Krzysztof
    Krolikowska, Marta
    JOURNAL OF MOLECULAR LIQUIDS, 2021, 344
  • [38] Tuning the melting point of selected ionic liquids through adjustment of the cation's dipole moment
    Rabideau, Brooks D.
    Soltani, Mohammad
    Parker, Rome A.
    Siu, Benjamin
    Salter, E. Alan
    Wierzbicki, Andrzej
    West, Kevin N.
    Davis, James H., Jr.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (21) : 12301 - 12311
  • [39] Role of conformational entropy in low melting point of ionic liquids: a molecular dynamics simulation study
    Sumida, Hiroki
    Kimura, Yoshifumi
    Endo, Takatsugu
    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 2024, 97 (01)
  • [40] Melting points of ionic liquids: Review and evaluation
    Zhengxing Dai
    Lei Wang
    Xiaohua Lu
    Xiaoyan Ji
    Green Energy & Environment, 2024, 9 (12) : 1802 - 1811