Prediction of the Melting Point of Ionic Liquids with Clustering and Noeuroevolution

被引:0
|
作者
Frausto-Solis, Juan [1 ]
Gonzalez-Barbosa, Juan Javier [1 ]
Cerecedo-Cordoba, Jorge Alberto [1 ]
Sanchez-Hernandez, Juan Paulo [2 ]
Diaz-Parra, Ocotlan [3 ]
Castilla-Valdez, Guadalupe [1 ]
机构
[1] Tecnol Nacl Mex Inst Tecnol Ciudad Madero, Cuidad Madero, Tamaulipas, Mexico
[2] Univ Politecn Estado Morelos, Jiutepec, Morelos, Mexico
[3] Univ Politecn Pachuca, Pachuca, Mexico
来源
INTERNATIONAL JOURNAL OF COMBINATORIAL OPTIMIZATION PROBLEMS AND INFORMATICS | 2023年 / 14卷 / 03期
关键词
Ionic Liquids; Clustering analysis; Neuroevolution; Neural Networks; Machine Learning;
D O I
10.61467/2007.1558.2023.v14i3.384
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Ionic liquids (ILs) are salts with a wide liquid temperature range and low melting points and can be fine-tuned to have specific physicochemical properties by the selection of their anion and cation. However, having a physical synthesis of multiple ILs for testing purposes can be expensive. For this reason, an insilico estimation of physicochemical properties is desired. The selection of these components is limited by the low precision offered by state-of-the-art predictive models. In this paper, we explore the prediction of melting points with clustering algorithms and a novel Neuroevolution approach. We focused our design on simplicity. We concluded that performing clustering analysis in a previous phase of the model generation improves the estimation accuracy of the melting point which is validated in experimentation made in-silico.
引用
收藏
页码:24 / 30
页数:7
相关论文
共 50 条
  • [21] Low-viscosity and low-melting point asymmetric trialkylsulfonium based ionic liquids as potential electrolytes
    Fang, Shaohua
    Yang, Li
    Wei, Chao
    Peng, Chengxin
    Tachibana, Kazuhiro
    Kamijima, Kouichi
    ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (11) : 2696 - 2702
  • [22] Cationic clustering influences the phase behaviour of ionic liquids
    Thomas Niemann
    Dimitri Zaitsau
    Anne Strate
    Alexander Villinger
    Ralf Ludwig
    Scientific Reports, 8
  • [23] Measurement and Prediction of the Thermal Conductivity of Ionic Liquids
    Rausch, Michael H.
    Krzeminski, Kamil
    Assenbaum, Daniel
    Wasserscheid, Peter
    Leipertz, Alfred
    Froeba, Andreas P.
    CHEMIE INGENIEUR TECHNIK, 2011, 83 (09) : 1510 - 1514
  • [24] Correlation and Prediction of the Transport Properties of Ionic Liquids
    Hossain, Mohammad Z.
    Teja, Amyn S.
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2016, 37 (01) : 1 - 17
  • [25] Correlation and Prediction of the Transport Properties of Ionic Liquids
    Mohammad Z. Hossain
    Amyn S. Teja
    International Journal of Thermophysics, 2016, 37
  • [26] Thermal Conductivity of Ionic Liquids: Measurement and Prediction
    A. P. Fröba
    M. H. Rausch
    K. Krzeminski
    D. Assenbaum
    P. Wasserscheid
    A. Leipertz
    International Journal of Thermophysics, 2010, 31 : 2059 - 2077
  • [27] Prediction carbon dioxide solubility in ionic liquids based on deep learning
    Deng, Tong
    Liu, Feng-hai
    Jia, Guo-zhu
    MOLECULAR PHYSICS, 2020, 118 (06)
  • [28] Thermal Conductivity of Ionic Liquids: Measurement and Prediction
    Froeba, A. P.
    Rausch, M. H.
    Krzeminski, K.
    Assenbaum, D.
    Wasserscheid, P.
    Leipertz, A.
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2010, 31 (11-12) : 2059 - 2077
  • [29] Effect of heating temperature on the flash point of ionic liquids
    Liaw, Horng-Jang
    Chen, Kuan-Yu
    Chen, Hao-Ying
    Liu, Sheng-Nan
    2014 INTERNATIONAL SYMPOSIUM ON SAFETY SCIENCE AND TECHNOLOGY, 2015, 84 : 293 - 296
  • [30] Design of Ionic Liquids Using Property Clustering and Decomposition Techniques
    Hada, Subin
    Herring, Robert H., III
    Eden, Mario R.
    23 EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2013, 32 : 955 - 960