Prediction of the Melting Point of Ionic Liquids with Clustering and Noeuroevolution

被引:0
|
作者
Frausto-Solis, Juan [1 ]
Gonzalez-Barbosa, Juan Javier [1 ]
Cerecedo-Cordoba, Jorge Alberto [1 ]
Sanchez-Hernandez, Juan Paulo [2 ]
Diaz-Parra, Ocotlan [3 ]
Castilla-Valdez, Guadalupe [1 ]
机构
[1] Tecnol Nacl Mex Inst Tecnol Ciudad Madero, Cuidad Madero, Tamaulipas, Mexico
[2] Univ Politecn Estado Morelos, Jiutepec, Morelos, Mexico
[3] Univ Politecn Pachuca, Pachuca, Mexico
关键词
Ionic Liquids; Clustering analysis; Neuroevolution; Neural Networks; Machine Learning;
D O I
10.61467/2007.1558.2023.v14i3.384
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Ionic liquids (ILs) are salts with a wide liquid temperature range and low melting points and can be fine-tuned to have specific physicochemical properties by the selection of their anion and cation. However, having a physical synthesis of multiple ILs for testing purposes can be expensive. For this reason, an insilico estimation of physicochemical properties is desired. The selection of these components is limited by the low precision offered by state-of-the-art predictive models. In this paper, we explore the prediction of melting points with clustering algorithms and a novel Neuroevolution approach. We focused our design on simplicity. We concluded that performing clustering analysis in a previous phase of the model generation improves the estimation accuracy of the melting point which is validated in experimentation made in-silico.
引用
收藏
页码:24 / 30
页数:7
相关论文
共 50 条
  • [11] Ionic Liquids Based on the Concept of Melting Point Lowering Due to Ethoxylation
    Rothe, Manuel
    Mueller, Eva
    Denk, Patrick
    Kunz, Werner
    MOLECULES, 2021, 26 (13):
  • [12] QSPR correlation of the melting point for pyridinium bromides, potential ionic liquids
    Katritzky, AR
    Lomaka, A
    Petrukhin, R
    Jain, R
    Karelson, M
    Visser, AE
    Rogers, RD
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2002, 42 (01): : 71 - 74
  • [13] Melting point depression of ionic liquids by their confinement in carbons of controlled mesoporosity
    Beguin, Francois
    Pavlenko, Vladimir
    Przygocki, Patryk
    Pawlyta, Miroslawa
    Ratajczak, Paula
    CARBON, 2020, 169 : 501 - 511
  • [14] Origin of low melting point of ionic liquids: dominant role of entropy
    Endo, Takatsugu
    Sunada, Kouki
    Sumida, Hiroki
    Kimura, Yoshifumi
    CHEMICAL SCIENCE, 2022, 13 (25) : 7560 - 7565
  • [15] Melting-Point Estimation of Ionic Liquids by a Group Contribution Method
    Aguirre, Claudia L.
    Cisternas, Luis A.
    Valderrama, Jose O.
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2012, 33 (01) : 34 - 46
  • [16] Optimising an artificial neural network for predicting the melting point of ionic liquids
    Torrecilla, Jose S.
    Rodriguez, Francisco
    Bravo, Jose L.
    Rothenberg, Gadi
    Seddon, Kenneth R.
    Lopez-Martin, Ignacio
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (38) : 5826 - 5831
  • [17] Melting-Point Estimation of Ionic Liquids by a Group Contribution Method
    Claudia L. Aguirre
    Luis A. Cisternas
    José O. Valderrama
    International Journal of Thermophysics, 2012, 33 : 34 - 46
  • [18] Machine-Learning Model Prediction of Ionic Liquids Melting Points
    Acar, Zafer
    Nguyen, Phu
    Lau, Kah Chun
    APPLIED SCIENCES-BASEL, 2022, 12 (05):
  • [19] Prediction of the melting points for two kinds of room temperature ionic liquids
    Sun, Ning
    He, Xuezhong
    Dong, Kun
    Zhang, Xiangping
    Lu, Xingmei
    He, Hongyan
    Zhang, Suojiang
    FLUID PHASE EQUILIBRIA, 2006, 246 (1-2) : 137 - 142
  • [20] Ionic liquids: prediction of their melting points by a recursive neural network model
    Bini, Riccardo
    Chiappe, Cinzia
    Duce, Celia
    Micheli, Alessio
    Solaro, Roberto
    Starita, Antonina
    Tine, Maria Rosaria
    GREEN CHEMISTRY, 2008, 10 (03) : 306 - 309