Prediction of the Melting Point of Ionic Liquids with Clustering and Noeuroevolution

被引:0
|
作者
Frausto-Solis, Juan [1 ]
Gonzalez-Barbosa, Juan Javier [1 ]
Cerecedo-Cordoba, Jorge Alberto [1 ]
Sanchez-Hernandez, Juan Paulo [2 ]
Diaz-Parra, Ocotlan [3 ]
Castilla-Valdez, Guadalupe [1 ]
机构
[1] Tecnol Nacl Mex Inst Tecnol Ciudad Madero, Cuidad Madero, Tamaulipas, Mexico
[2] Univ Politecn Estado Morelos, Jiutepec, Morelos, Mexico
[3] Univ Politecn Pachuca, Pachuca, Mexico
关键词
Ionic Liquids; Clustering analysis; Neuroevolution; Neural Networks; Machine Learning;
D O I
10.61467/2007.1558.2023.v14i3.384
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Ionic liquids (ILs) are salts with a wide liquid temperature range and low melting points and can be fine-tuned to have specific physicochemical properties by the selection of their anion and cation. However, having a physical synthesis of multiple ILs for testing purposes can be expensive. For this reason, an insilico estimation of physicochemical properties is desired. The selection of these components is limited by the low precision offered by state-of-the-art predictive models. In this paper, we explore the prediction of melting points with clustering algorithms and a novel Neuroevolution approach. We focused our design on simplicity. We concluded that performing clustering analysis in a previous phase of the model generation improves the estimation accuracy of the melting point which is validated in experimentation made in-silico.
引用
收藏
页码:24 / 30
页数:7
相关论文
共 50 条
  • [1] Ionic liquids: Prediction of melting point by molecular-based model
    Farahani, Nasrin
    Gharagheizi, Farhad
    Mirkhani, Seyyed Alireza
    Tumba, Kaniki
    THERMOCHIMICA ACTA, 2012, 549 : 17 - 34
  • [2] Prediction of melting points for ionic liquids
    Trohalaki, S
    Pachter, R
    QSAR & COMBINATORIAL SCIENCE, 2005, 24 (04): : 485 - 490
  • [3] Machine Learning Models for Melting Point Prediction of Ionic Liquids: CatBoost Approach
    Blaise, Mathias
    Barras, Simon
    Yerly, Florence
    CHIMIA, 2023, 77 (09) : 625 - 627
  • [4] Melting point depression of ionic liquids confined in nanospaces
    Kanakubo, M
    Hiejima, Y
    Minami, K
    Aizawa, T
    Nanjo, H
    CHEMICAL COMMUNICATIONS, 2006, (17) : 1828 - 1830
  • [5] A novel method for predicting melting point of ionic liquids
    Keshavarz, Mohammad Hossein
    Pouretedal, Hamid Reza
    Saberi, Ehsan
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2018, 116 : 333 - 339
  • [6] Tetraalkylammonium Chlorides as Melting Point Depressants of Ionic Liquids
    Martins, Monia A. R.
    Abranches, Dinis O.
    Silva, Liliana P.
    Pinho, Simao P.
    Coutinho, Joao A. P.
    JOURNAL OF SOLUTION CHEMISTRY, 2024, 53 (04) : 538 - 551
  • [7] Tetraalkylammonium Chlorides as Melting Point Depressants of Ionic Liquids
    Mónia A. R. Martins
    Dinis O. Abranches
    Liliana P. Silva
    Simão P. Pinho
    João A. P. Coutinho
    Journal of Solution Chemistry, 2024, 53 : 538 - 551
  • [8] Melting Temperature Estimation of Imidazole Ionic Liquids with Clustering Methods
    Alberto Cerecedo-Cordoba, Jorge
    Gonzalez Barbosa, Juan Javier
    Frausto Solis, Juan
    Violeta Gallardo-Rivas, Nohra
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (07) : 3144 - 3153
  • [9] A group contribution method to predict the melting point of ionic liquids
    Lazzus, Juan A.
    FLUID PHASE EQUILIBRIA, 2012, 313 : 1 - 6
  • [10] New quantum chemistry-based descriptors for better prediction of melting point and viscosity of ionic liquids
    Mehrkesh, Amirhossein
    Karunanithi, Arunprakash T.
    FLUID PHASE EQUILIBRIA, 2016, 427 : 498 - 503