A robust microbiome signature for autism spectrum disorder across different studies using machine learning

被引:5
|
作者
Peralta-Marzal, Lucia N. [1 ]
Rojas-Velazquez, David [1 ,2 ]
Rigters, Douwe [1 ]
Prince, Naika [1 ]
Garssen, Johan [1 ,3 ]
Kraneveld, Aletta D. [1 ,4 ]
Perez-Pardo, Paula [1 ]
Lopez-Rincon, Alejandro [1 ,2 ]
机构
[1] Univ Utrecht, Utrecht Inst Pharmaceut Sci, Fac Sci, Div Pharmacol, Utrecht, Netherlands
[2] Univ Med Ctr Utrecht, Julius Ctr Hlth Sci & Primary Care, Dept Data Sci, Utrecht, Netherlands
[3] Danone Nutr Res, Global Ctr Excellence Immunol, Utrecht, Netherlands
[4] Vrije Univ Amsterdam, Fac Sci, Dept Neurosci, Amsterdam, Netherlands
关键词
GUT MICROBIOME; CHILDREN;
D O I
10.1038/s41598-023-50601-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Autism spectrum disorder (ASD) is a highly complex neurodevelopmental disorder characterized by deficits in sociability and repetitive behaviour, however there is a great heterogeneity within other comorbidities that accompany ASD. Recently, gut microbiome has been pointed out as a plausible contributing factor for ASD development as individuals diagnosed with ASD often suffer from intestinal problems and show a differentiated intestinal microbial composition. Nevertheless, gut microbiome studies in ASD rarely agree on the specific bacterial taxa involved in this disorder. Regarding the potential role of gut microbiome in ASD pathophysiology, our aim is to investigate whether there is a set of bacterial taxa relevant for ASD classification by using a sibling-controlled dataset. Additionally, we aim to validate these results across two independent cohorts as several confounding factors, such as lifestyle, influence both ASD and gut microbiome studies. A machine learning approach, recursive ensemble feature selection (REFS), was applied to 16S rRNA gene sequencing data from 117 subjects (60 ASD cases and 57 siblings) identifying 26 bacterial taxa that discriminate ASD cases from controls. The average area under the curve (AUC) of this specific set of bacteria in the sibling-controlled dataset was 81.6%. Moreover, we applied the selected bacterial taxa in a tenfold cross-validation scheme using two independent cohorts (a total of 223 samples-125 ASD cases and 98 controls). We obtained average AUCs of 74.8% and 74%, respectively. Analysis of the gut microbiome using REFS identified a set of bacterial taxa that can be used to predict the ASD status of children in three distinct cohorts with AUC over 80% for the best-performing classifiers. Our results indicate that the gut microbiome has a strong association with ASD and should not be disregarded as a potential target for therapeutic interventions. Furthermore, our work can contribute to use the proposed approach for identifying microbiome signatures across other 16S rRNA gene sequencing datasets.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A robust microbiome signature for autism spectrum disorder across different studies using machine learning
    Lucia N. Peralta-Marzal
    David Rojas-Velazquez
    Douwe Rigters
    Naika Prince
    Johan Garssen
    Aletta D. Kraneveld
    Paula Perez-Pardo
    Alejandro Lopez-Rincon
    Scientific Reports, 14
  • [2] Autism Spectrum Disorder Studies Using fMRI Data and Machine Learning: A Review
    Liu, Meijie
    Li, Baojuan
    Hu, Dewen
    FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [3] Machine Learning Methodologies for Predicting Autism Spectrum Disorder across Generations
    Keren, F.
    Keziah, F.
    Kumar, Rubesh T.
    Vanitha, L.
    Venmathi, A. R.
    Gnanaraj, Fredrick F.
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [4] Prediction of Autism Spectrum Disorder Using AI and Machine Learning
    Center for Computational, Biology and Bioinformatics, Amity University, Artificial Intelligence and IoT lab, UP, India
    不详
    不详
    NSW, Australia
    不详
    Proc. Int. Conf. Ubiquitous Inf. Manag. Commun., IMCOM,
  • [5] Autism Spectrum Disorder Prediction Using Machine Learning Classifiers
    Aburub, Faisal
    Hadi, Wael
    Al-Banna, Abedal-Kareem
    Arafah, Mohammad
    2024 14TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION SYSTEMS, ICPRS, 2024,
  • [6] Predicting Autism Spectrum Disorder Using Machine Learning Classifiers
    Chowdhury, Koushik
    Iraj, Mir Ahmad
    2020 5TH IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS ON ELECTRONICS, INFORMATION, COMMUNICATION & TECHNOLOGY (RTEICT-2020), 2020, : 324 - 327
  • [7] Autism Spectrum Disorder Prediction Using Machine Learning Algorithms
    Selvaraj, Shanthi
    Palanisamy, Poonkodi
    Parveen, Summia
    Monisha
    COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING, 2020, 1108 : 496 - 503
  • [8] Machine Learning-Based Blood RNA Signature for Diagnosis of Autism Spectrum Disorder
    Voinsky, Irena
    Fridland, Oleg Y.
    Aran, Adi
    Frye, Richard E.
    Gurwitz, David
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (03)
  • [9] An Efficient Autism Spectrum Disorder Classification in Different Age Groups using Machine Learning Models
    Subhash, Ambika Rani
    Motagi, Ashwin Kumar U.
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2024, 20 (09) : 17 - 38
  • [10] Autism spectrum disorder prediction system using machine learning and deep learning
    Sharma, Anshu
    Tanwar, Poonam
    International Journal of Applied Systemic Studies, 2024, 11 (02) : 159 - 173