Unsteady numerical study of film cooling and heat transfer on turbine blade squealer tip with coolant jet

被引:4
|
作者
You, Yulong [1 ,2 ]
Ding, Liang [1 ,2 ]
机构
[1] AECC Commercial Aircraft Engine Co Ltd, Shanghai, Peoples R China
[2] Shanghai Engn Res Ctr Commercial Aircraft Engine, Shanghai, Peoples R China
关键词
Film cooling; heat transfer; squealer tip; Turbine blade; unsteady;
D O I
10.1080/10407782.2023.2294050
中图分类号
O414.1 [热力学];
学科分类号
摘要
Cooling performance of blade squealer tip with film holes in its cavity was investigated numerically under unsteady condition, and the effects of blowing ratio (BR), cavity depth, and tip clearance were comprehensively discussed. Results show that flow inside tip gap periodically fluctuates and affects the outlet pressure, BR, and jet characteristics of film hole, resulting in unsteady tip cooling effectiveness which could not be observed in steady condition. Average cooling effectiveness on 40-70% axial chord of tip changes the most over time. In comparison to steady result, unsteady time-average cooling effectiveness of tip and its region before 40% axial chord is lower while it is relatively higher in the region after 40% axial chord. Coolant from tip hole located in the flow area of rolling vortex is strongly mixed with rolling vortex, leading to high heat transfer coefficient downstream of that hole. Unsteady leakage flow and boundary layer flow cause stronger heat transfer on squealer rim than steady result. Small BR under unsteady condition could result in insufficient coolant supply and high temperature gas intrusion in tip holes located in 40-70% axial chord of tip. Increasing cavity depth brings longer normal jet distance and higher momentum of coolant, leading to coverage deterioration on floor with a drop in tip average cooling effectiveness of 11.6-34.7%. Large tip clearance causes the distribution of BR to become more uneven, and then more coolant flows out from trailing region, resulting in decrease tendency of average cooling efficiency with change in the range of -23.4%similar to 6.1% over time compared to base design.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] Influence of Tip Injection and Film Cooling for Blade Tip Flow and Heat Transfer
    Yu, Kuahai
    Hu, Liuxian
    Yang, Xi
    Yue, Zhufeng
    MATERIALS AND COMPUTATIONAL MECHANICS, PTS 1-3, 2012, 117-119 : 643 - +
  • [42] TURBINE BLADE TIP FILM COOLING WITH BLADE ROTATION PART I: TIP AND PRESSURE SIDE COOLANT INJECTION
    Tamunobere, Onieluan
    Acharya, Sumanta
    ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2015, VOL 5B, 2015,
  • [43] Heat transfer coefficients and film-cooling effectiveness on a gas turbine blade tip
    Kwak, JS
    Han, JC
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2003, 125 (03): : 494 - 502
  • [44] Cooling layout optimization for a turbine blade squealer tip with the application of oval holes
    Guo, Jiajie
    Song, Liming
    Tao, Zhi
    Li, Jun
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2024, 159
  • [45] NUMERICAL STUDY OF THE FILM COOLING WITH DISCRETE-HOLE ARRANGEMENT ON A CUT BACK SQUEALER BLADE TIP
    Zhang, Xiang
    Yang, Zhong
    Tian, Shuqing
    Ma, Haiteng
    ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2015, VOL 5B, 2015,
  • [46] Effects of squealer rim height on heat/mass transfer on the floor of cavity squealer tip in a high turning turbine blade cascade
    Kang, Dong Bum
    Lee, Sang Woo
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 99 : 283 - 292
  • [47] Effects of Squealer Winglet on the Aerodynamic and Heat Transfer Performances of Turbine Rotor Blade Tip
    Jiang S.
    Li Z.
    Li J.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2019, 53 (09): : 7 - 14and41
  • [48] The effect of rail crown film hole injection angle and blowing ratio on the flow and cooling performance of the squealer tip in a turbine blade
    Zhou, Haimeng
    Luo, Lei
    Du, Wei
    Yan, Han
    Wang, Songtao
    APPLIED THERMAL ENGINEERING, 2024, 250
  • [49] Numerical research on the film-cooling gas turbine blade with the conjugate heat transfer method
    Sun, H. O.
    Bu, S.
    Luan, Y. G.
    Sun, T.
    Pei, X. M.
    MATERIALS RESEARCH INNOVATIONS, 2015, 19 : 175 - 180
  • [50] NUMERICAL STUDY ON FILM COOLING AND CONVECTIVE HEAT TRANSFER CHARACTERISTICS IN THE CUTBACK REGION OF TURBINE BLADE TRAILING EDGE
    Xie, Yong-Hui
    Ye, Dong-Ting
    Shen, Zhong-Yang
    THERMAL SCIENCE, 2016, 20 : S643 - S649