共 12 条
Bearing fault diagnosis algorithm based on multi-source data and auxiliary classifier
被引:0
作者:

Jin, Yulin
论文数: 0 引用数: 0
h-index: 0
机构:
Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Peoples R China Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Peoples R China

Luo, Xiaochuan
论文数: 0 引用数: 0
h-index: 0
机构:
Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Peoples R China
Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110819, Peoples R China Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Peoples R China

Zhang, Lei
论文数: 0 引用数: 0
h-index: 0
机构:
Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110819, Peoples R China Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Peoples R China
机构:
[1] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Peoples R China
[2] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110819, Peoples R China
来源:
2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC
|
2023年
基金:
中国国家自然科学基金;
国家重点研发计划;
关键词:
fault diagnosis;
convolutional neural network;
sensor fusion;
deep learning;
CONVOLUTIONAL NEURAL-NETWORK;
D O I:
10.1109/CCDC58219.2023.10326841
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
In recent years, with the development of sensor technology and deep learning, intelligent bearing diagnosis algorithms using multi-source data have achieved great success. However, when faced with the input of single sensor data, the deep learning model trained with multi-source data cannot work, which affects the flexibility of model application. Meanwhile, the method of only adding a loss function in the final classification layer is insufficient to restrict each branch model, and will also affect the performance of the model. Based on this, this paper proposes a parallel convolutional neural network with auxiliary classifier. The auxiliary classifiers added in each branch can not only give fault diagnosis results when only a single data is used, but also improve the performance of the final multi-data fusion by optimizing the output features of each branch, and broaden the application range of the diagnosis model. The proposed method is tested on the bearing fault dataset, the experimental results show that, after adding multiple losses, the structural form of the auxiliary classifier can effectively improve the fault diagnosis accuracy and robustness of the parallel convolutional neural network. Meanwhile, the auxiliary classifiers of each branch can also obtain good classification performance when facing single sensor data, which better improves the flexibility of the model.
引用
收藏
页码:622 / 627
页数:6
相关论文
共 12 条
[1]
Data fusion and machine learning for industrial prognosis: Trends and perspectives towards Industry 4.0
[J].
Diez-Olivan, Alberto
;
Del Ser, Javier
;
Galar, Diego
;
Sierra, Basilio
.
INFORMATION FUSION,
2019, 50
:92-111

Diez-Olivan, Alberto
论文数: 0 引用数: 0
h-index: 0
机构:
TECNALIA, Donostia San Sebastian 20009, Spain TECNALIA, Donostia San Sebastian 20009, Spain

Del Ser, Javier
论文数: 0 引用数: 0
h-index: 0
机构:
TECNALIA, Donostia San Sebastian 20009, Spain
Univ Basque Country, UPV EHU, Dept Commun Engn, Bilbao 48013, Spain
BCAM, Bilbao 48009, Bizkaia, Spain TECNALIA, Donostia San Sebastian 20009, Spain

论文数: 引用数:
h-index:
机构:

论文数: 引用数:
h-index:
机构:
[2]
A rotating machinery fault diagnosis method based on multi-scale dimensionless indicators and random forests
[J].
Hu, Qin
;
Si, Xiao-Sheng
;
Zhang, Qing-Hua
;
Qin, Ai-Song
.
MECHANICAL SYSTEMS AND SIGNAL PROCESSING,
2020, 139 (139)

Hu, Qin
论文数: 0 引用数: 0
h-index: 0
机构:
Rocket Force Univ Engn, Dept Automat, Xian 710025, Shaanxi, Peoples R China
Guangdong Univ Petrochem Technol, Guangdong Prov Key Lab Petrochem Equipment Fault, Maoming 525000, Peoples R China Rocket Force Univ Engn, Dept Automat, Xian 710025, Shaanxi, Peoples R China

Si, Xiao-Sheng
论文数: 0 引用数: 0
h-index: 0
机构:
Rocket Force Univ Engn, Dept Automat, Xian 710025, Shaanxi, Peoples R China Rocket Force Univ Engn, Dept Automat, Xian 710025, Shaanxi, Peoples R China

Zhang, Qing-Hua
论文数: 0 引用数: 0
h-index: 0
机构:
Guangdong Univ Petrochem Technol, Guangdong Prov Key Lab Petrochem Equipment Fault, Maoming 525000, Peoples R China Rocket Force Univ Engn, Dept Automat, Xian 710025, Shaanxi, Peoples R China

Qin, Ai-Song
论文数: 0 引用数: 0
h-index: 0
机构:
Guangdong Univ Petrochem Technol, Guangdong Prov Key Lab Petrochem Equipment Fault, Maoming 525000, Peoples R China Rocket Force Univ Engn, Dept Automat, Xian 710025, Shaanxi, Peoples R China
[3]
A review on empirical mode decomposition in fault diagnosis of rotating machinery
[J].
Lei, Yaguo
;
Lin, Jing
;
He, Zhengjia
;
Zuo, Ming J.
.
MECHANICAL SYSTEMS AND SIGNAL PROCESSING,
2013, 35 (1-2)
:108-126

Lei, Yaguo
论文数: 0 引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Peoples R China Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Peoples R China

Lin, Jing
论文数: 0 引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Peoples R China Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Peoples R China

He, Zhengjia
论文数: 0 引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Peoples R China Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Peoples R China

Zuo, Ming J.
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Alberta, Dept Mech Engn, Edmonton, AB T6G 2G8, Canada Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Peoples R China
[4]
Artificial intelligence for fault diagnosis of rotating machinery: A review
[J].
Liu, Ruonan
;
Yang, Boyuan
;
Zio, Enrico
;
Chen, Xuefeng
.
MECHANICAL SYSTEMS AND SIGNAL PROCESSING,
2018, 108
:33-47

Liu, Ruonan
论文数: 0 引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Shaanxi, Peoples R China
Xi An Jiao Tong Univ, Sch Mech Engn, Xian 710049, Shaanxi, Peoples R China Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Shaanxi, Peoples R China

Yang, Boyuan
论文数: 0 引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Shaanxi, Peoples R China
Xi An Jiao Tong Univ, Sch Mech Engn, Xian 710049, Shaanxi, Peoples R China Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Shaanxi, Peoples R China

Zio, Enrico
论文数: 0 引用数: 0
h-index: 0
机构:
Univ Paris Saclay, Cent Supelec, Chair Syst Sci & Energet Challenge, EDF Fdn,Lab Genie Ind, F-92290 Chatenay Malabry, France
Politecn Milan, Energy Dept, Milan, Italy Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Shaanxi, Peoples R China

Chen, Xuefeng
论文数: 0 引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Shaanxi, Peoples R China
Xi An Jiao Tong Univ, Sch Mech Engn, Xian 710049, Shaanxi, Peoples R China Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Shaanxi, Peoples R China
[5]
Multi-node load forecasting based on multi-task learning with modal feature extraction
[J].
Tan, Mao
;
Hu, Chenglin
;
Chen, Jie
;
Wang, Ling
;
Li, Zhengmao
.
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE,
2022, 112

Tan, Mao
论文数: 0 引用数: 0
h-index: 0
机构:
Xiangtan Univ, Hunan Natl Ctr Appl Math, Xiangtan 411105, Peoples R China
Xiangtan Univ, Sch Automat & Elect Informat, Xiangtan 411105, Peoples R China Xiangtan Univ, Hunan Natl Ctr Appl Math, Xiangtan 411105, Peoples R China

Hu, Chenglin
论文数: 0 引用数: 0
h-index: 0
机构:
Xiangtan Univ, Sch Comp Sci, Xiangtan 411105, Peoples R China Xiangtan Univ, Hunan Natl Ctr Appl Math, Xiangtan 411105, Peoples R China

Chen, Jie
论文数: 0 引用数: 0
h-index: 0
机构:
Xiangtan Univ, Hunan Natl Ctr Appl Math, Xiangtan 411105, Peoples R China
Xiangtan Univ, Sch Automat & Elect Informat, Xiangtan 411105, Peoples R China Xiangtan Univ, Hunan Natl Ctr Appl Math, Xiangtan 411105, Peoples R China

Wang, Ling
论文数: 0 引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China Xiangtan Univ, Hunan Natl Ctr Appl Math, Xiangtan 411105, Peoples R China

Li, Zhengmao
论文数: 0 引用数: 0
h-index: 0
机构:
Nanyang Technol Univ, Inst Catastrophe Risk Management, Singapore 639798, Singapore Xiangtan Univ, Hunan Natl Ctr Appl Math, Xiangtan 411105, Peoples R China
[6]
Batch-normalized deep neural networks for achieving fast intelligent fault diagnosis of machines
[J].
Wang, Jinrui
;
Li, Shunming
;
An, Zenghui
;
Jiang, Xingxing
;
Qian, Weiwei
;
Ji, Shanshan
.
NEUROCOMPUTING,
2019, 329
:53-65

Wang, Jinrui
论文数: 0 引用数: 0
h-index: 0
机构:
Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Nanjing, Jiangsu, Peoples R China Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Nanjing, Jiangsu, Peoples R China

Li, Shunming
论文数: 0 引用数: 0
h-index: 0
机构:
Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Nanjing, Jiangsu, Peoples R China Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Nanjing, Jiangsu, Peoples R China

An, Zenghui
论文数: 0 引用数: 0
h-index: 0
机构:
Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Nanjing, Jiangsu, Peoples R China Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Nanjing, Jiangsu, Peoples R China

Jiang, Xingxing
论文数: 0 引用数: 0
h-index: 0
机构:
Soochow Univ, Sch Urban Rail Transportat, Suzhou, Peoples R China Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Nanjing, Jiangsu, Peoples R China

Qian, Weiwei
论文数: 0 引用数: 0
h-index: 0
机构:
Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Nanjing, Jiangsu, Peoples R China Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Nanjing, Jiangsu, Peoples R China

Ji, Shanshan
论文数: 0 引用数: 0
h-index: 0
机构:
Qingdao Dingtu Spatioinformat Technol Ltd, Qingdao, Peoples R China Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Nanjing, Jiangsu, Peoples R China
[7]
A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis Method
[J].
Wen, Long
;
Li, Xinyu
;
Gao, Liang
;
Zhang, Yuyan
.
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,
2018, 65 (07)
:5990-5998

Wen, Long
论文数: 0 引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Dept Ind & Mfg Syst Engn, Sch Mech Sci & Engn, Wuhan 430074, Hubei, Peoples R China Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Dept Ind & Mfg Syst Engn, Sch Mech Sci & Engn, Wuhan 430074, Hubei, Peoples R China

Li, Xinyu
论文数: 0 引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Dept Ind & Mfg Syst Engn, Sch Mech Sci & Engn, Wuhan 430074, Hubei, Peoples R China Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Dept Ind & Mfg Syst Engn, Sch Mech Sci & Engn, Wuhan 430074, Hubei, Peoples R China

Gao, Liang
论文数: 0 引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Dept Ind & Mfg Syst Engn, Sch Mech Sci & Engn, Wuhan 430074, Hubei, Peoples R China Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Dept Ind & Mfg Syst Engn, Sch Mech Sci & Engn, Wuhan 430074, Hubei, Peoples R China

Zhang, Yuyan
论文数: 0 引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Dept Ind & Mfg Syst Engn, Sch Mech Sci & Engn, Wuhan 430074, Hubei, Peoples R China Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Dept Ind & Mfg Syst Engn, Sch Mech Sci & Engn, Wuhan 430074, Hubei, Peoples R China
[8]
A novel optimized SVM classification algorithm with multi-domain feature and its application to fault diagnosis of rolling bearing
[J].
Yan, Xiaoan
;
Jia, Minping
.
NEUROCOMPUTING,
2018, 313
:47-64

Yan, Xiaoan
论文数: 0 引用数: 0
h-index: 0
机构:
Southeast Univ, Sch Mech Engn, Nanjing 211189, Jiangsu, Peoples R China Southeast Univ, Sch Mech Engn, Nanjing 211189, Jiangsu, Peoples R China

Jia, Minping
论文数: 0 引用数: 0
h-index: 0
机构:
Southeast Univ, Sch Mech Engn, Nanjing 211189, Jiangsu, Peoples R China Southeast Univ, Sch Mech Engn, Nanjing 211189, Jiangsu, Peoples R China
[9]
Bearing fault diagnosis using a speed-adaptive network based on vibro-speed data fusion and majority voting
[J].
Yuan, Zonghao
;
Ma, Zengqiang
;
Li, Xin
;
Gao, Dayong
;
Fu, Zhipeng
.
MEASUREMENT SCIENCE AND TECHNOLOGY,
2022, 33 (05)

Yuan, Zonghao
论文数: 0 引用数: 0
h-index: 0
机构:
Shijiazhuang Tiedao Univ, State Key Lab Mech Behav & Syst Safety Traff Engn, Shijiazhuang 050043, Hebei, Peoples R China
Shijiazhuang Tiedao Univ, Sch Traff & Transportat, Shijiazhuang 050043, Hebei, Peoples R China Shijiazhuang Tiedao Univ, State Key Lab Mech Behav & Syst Safety Traff Engn, Shijiazhuang 050043, Hebei, Peoples R China

Ma, Zengqiang
论文数: 0 引用数: 0
h-index: 0
机构:
Shijiazhuang Tiedao Univ, State Key Lab Mech Behav & Syst Safety Traff Engn, Shijiazhuang 050043, Hebei, Peoples R China
Shijiazhuang Tiedao Univ, Sch Elect & Elect Engn, Shijiazhuang 050043, Hebei, Peoples R China Shijiazhuang Tiedao Univ, State Key Lab Mech Behav & Syst Safety Traff Engn, Shijiazhuang 050043, Hebei, Peoples R China

Li, Xin
论文数: 0 引用数: 0
h-index: 0
机构:
Shijiazhuang Tiedao Univ, State Key Lab Mech Behav & Syst Safety Traff Engn, Shijiazhuang 050043, Hebei, Peoples R China
Shijiazhuang Tiedao Univ, Sch Traff & Transportat, Shijiazhuang 050043, Hebei, Peoples R China Shijiazhuang Tiedao Univ, State Key Lab Mech Behav & Syst Safety Traff Engn, Shijiazhuang 050043, Hebei, Peoples R China

Gao, Dayong
论文数: 0 引用数: 0
h-index: 0
机构:
Shijiazhuang Tiedao Univ, Sch Elect & Elect Engn, Shijiazhuang 050043, Hebei, Peoples R China Shijiazhuang Tiedao Univ, State Key Lab Mech Behav & Syst Safety Traff Engn, Shijiazhuang 050043, Hebei, Peoples R China

Fu, Zhipeng
论文数: 0 引用数: 0
h-index: 0
机构:
Shijiazhuang Tiedao Univ, Sch Elect & Elect Engn, Shijiazhuang 050043, Hebei, Peoples R China Shijiazhuang Tiedao Univ, State Key Lab Mech Behav & Syst Safety Traff Engn, Shijiazhuang 050043, Hebei, Peoples R China
[10]
Bearing fault diagnosis method based on multi-source heterogeneous information fusion
[J].
Zhang, Ke
;
Gao, Tianhao
;
Shi, Huaitao
.
MEASUREMENT SCIENCE AND TECHNOLOGY,
2022, 33 (07)

Zhang, Ke
论文数: 0 引用数: 0
h-index: 0
机构:
Shenyang Jianzhu Univ, Sch Mech Engn, Shenyang 110168, Peoples R China Shenyang Jianzhu Univ, Sch Mech Engn, Shenyang 110168, Peoples R China

Gao, Tianhao
论文数: 0 引用数: 0
h-index: 0
机构:
Shenyang Jianzhu Univ, Sch Mech Engn, Shenyang 110168, Peoples R China Shenyang Jianzhu Univ, Sch Mech Engn, Shenyang 110168, Peoples R China

Shi, Huaitao
论文数: 0 引用数: 0
h-index: 0
机构:
Shenyang Jianzhu Univ, Sch Mech Engn, Shenyang 110168, Peoples R China Shenyang Jianzhu Univ, Sch Mech Engn, Shenyang 110168, Peoples R China