Thermal QCD in a non-uniform magnetic background

被引:7
|
作者
Brandt, B. B. [1 ]
Cuteri, F. [2 ]
Endroedi, G. [1 ]
Marko, G. [1 ]
Sandbote, L. [1 ]
Valois, A. D. M. [1 ]
机构
[1] Univ Bielefeld, Universitatsstr 25, D-33615 Bielefeld, Germany
[2] Goethe Univ Frankfurt, Inst Theoret Phys, Max von Laue Str 1, D-60438 Frankfurt, Germany
关键词
Lattice QCD; Lattice Quantum Field Theory; Phase Transitions; Thermal Field Theory; FIELDS; ENERGY;
D O I
10.1007/JHEP11(2023)229
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Off-central heavy-ion collisions are known to feature magnetic fields with magnitudes and characteristic gradients corresponding to the scale of the strong interactions. In this work, we employ equilibrium lattice simulations of the underlying theory, QCD, involving similar inhomogeneous magnetic field profiles to achieve a better understanding of this system. We simulate three flavors of dynamical staggered quarks with physical masses at a range of magnetic fields and temperatures, and extrapolate the results to the continuum limit. Analyzing the impact of the field on the quark condensate and the Polyakov loop, we find non-trivial spatial features that render the QCD medium qualitatively different as in the homogeneous setup, especially at temperatures around the transition. In addition, we construct leading-order chiral perturbation theory for the inhomogeneous background and compare its prediction to our lattice results at low temperature. Our findings will be useful to benchmark effective theories and low-energy models of QCD for a better description of peripheral heavy-ion collisions.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Thermal QCD in a non-uniform magnetic background
    B. B. Brandt
    F. Cuteri
    G. Endrődi
    G. Markó
    L. Sandbote
    A. D. M. Valois
    Journal of High Energy Physics, 2023
  • [2] Optoelectronic tweezers with a non-uniform background field
    Zaman, Mohammad Asif
    Padhy, Punnag
    Cheng, Yao-Te
    Galambos, Ludwig
    Hesselink, Lambertus
    APPLIED PHYSICS LETTERS, 2020, 117 (17)
  • [3] Hydro-thermal interactions of a ferrofluid in a non-uniform magnetic field
    Dalvi, Shubham
    van der Meer, Theo H.
    Shahi, Mina
    HEAT AND MASS TRANSFER, 2022, 60 (12) : 1967 - 1977
  • [4] Assessment indices for uniform and non-uniform thermal environments
    Zhang Y.
    Sun S.
    Zhao R.
    Frontiers of Energy and Power Engineering in China, 2008, 2 (2): : 129 - 133
  • [5] Particle acceleration by interstellar plasma shock waves in non-uniform background magnetic field
    Rashed-Mohassel, P.
    Ghorbanalilu, M.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 498 (04) : 5517 - 5523
  • [7] A thermal comfort model for the non-uniform thermal environments
    Wang, Yuemei
    Lian, Zhiwei
    ENERGY AND BUILDINGS, 2018, 172 : 397 - 404
  • [8] Thermal sensation and comfort in non-uniform thermal environment
    Muro K.
    Saito H.
    AIJ Journal of Technology and Design, 2019, 25 (61): : 1179 - 1184
  • [9] Magnetic fluid bridge in a non-uniform magnetic field
    Pelevina, D. A.
    Naletova, V. A.
    Turkov, V. A.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2017, 431 : 184 - 187
  • [10] NON-UNIFORM HYPERBOLICITY AND NON-UNIFORM SPECIFICATION
    Oliveira, Krerley
    Tian, Xueting
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (08) : 4371 - 4392