Linearized Transformed L1 Galerkin FEMs with Unconditional Convergence for Nonlinear Time Fractional Schr?dinger Equations

被引:28
作者
Yuan, Wanqiu [1 ]
Li, Dongfang [1 ,2 ]
Zhang, Chengjian [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan 430074, Peoples R China
来源
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS | 2023年 / 16卷 / 02期
基金
中国国家自然科学基金;
关键词
Optimal error estimates; time fractional Schr?dinger equations; transformed L1 scheme; discrete fractional Gr?nwall inequality; FINITE-ELEMENT-METHOD; SCHRODINGER-EQUATION; ERROR ANALYSIS; SCHEMES; MESHES;
D O I
10.4208/nmtma.OA-2022-0087
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A linearized transformed L1 Galerkin finite element method (FEM) is pre-sented for numerically solving the multi-dimensional time fractional Schrodinger equations. Unconditionally optimal error estimates of the fully-discrete scheme are proved. Such error estimates are obtained by combining a new discrete fractional Gronwall inequality, the corresponding Sobolev embedding theorems and some in-verse inequalities. While the previous unconditional convergence results are usually obtained by using the temporal-spatial error spitting approaches. Numerical exam-ples are presented to confirm the theoretical results.
引用
收藏
页码:348 / 369
页数:22
相关论文
共 41 条
[1]   A new difference scheme for the time fractional diffusion equation [J].
Alikhanov, Anatoly A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 280 :424-438
[2]   A new Jacobi spectral collocation method for solving 1+1 fractional Schrodinger equations and fractional coupled Schrodinger systems [J].
Bhrawy, A. H. ;
Doha, E. H. ;
Ezz-Eldien, S. S. ;
Van Gorder, Robert A. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2014, 129 (12)
[3]   Finite Difference Schemes for the Variable Coefficients Single and Multi-Term Time-Fractional Diffusion Equations with Non-Smooth Solutions on Graded and Uniform Meshes [J].
Cui, Mingrong .
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2019, 12 (03) :845-866
[4]  
Esen A., 2017, Ann. Math. Silesianae, V31, P83, DOI [10.1515/amsil-2016-0015, DOI 10.1515/AMSIL-2016-0015]
[5]   An efficient energy-preserving method for the two-dimensional fractional Schrodinger equation [J].
Fu, Yayun ;
Xu, Zhuangzhi ;
Cai, Wenjun ;
Wang, Yushun .
APPLIED NUMERICAL MATHEMATICS, 2021, 165 :232-247
[6]   High-order structure-preserving algorithms for the multi-dimensional fractional nonlinear Schrodinger equation based on the SAV approach [J].
Fu, Yayun ;
Hu, Dongdong ;
Wang, Yushun .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 185 :238-255
[7]   Stability and Convergence Analysis of Fully Discrete Fourier Collocation Spectral Method for 3-D Viscous Burgers' Equation [J].
Gottlieb, Sigal ;
Wang, Cheng .
JOURNAL OF SCIENTIFIC COMPUTING, 2012, 53 (01) :102-128
[8]   Unconditionally optimal convergence of a linearized Galerkin FEM for the nonlinear time-fractional mobile/immobile transport equation [J].
Guan, Zhen ;
Wang, Jungang ;
Liu, Ying ;
Nie, Yufeng .
APPLIED NUMERICAL MATHEMATICS, 2022, 172 :133-156
[9]   Fractional-time Schrodinger equation: Fractional dynamics on a comb [J].
Iomin, Alexander .
CHAOS SOLITONS & FRACTALS, 2011, 44 (4-5) :348-352
[10]   Subdiffusion with time-dependent coefficients: improved regularity and second-order time stepping [J].
Jin, Bangti ;
Li, Buyang ;
Zhou, Zhi .
NUMERISCHE MATHEMATIK, 2020, 145 (04) :883-913