EXISTENCE OF ENTROPY SOLUTIONS FOR SOME QUASILINEAR ANISOTROPIC ELLIPTIC UNILATERAL PROBLEMS WITH VARIABLE EXPONENTS

被引:1
|
作者
Azroul, Elhoussine [1 ]
Bouziani, Mohammed [2 ]
Hjiaj, Hassane [3 ]
机构
[1] Univ Sidi Mohamed Ben Abdellah, Lab Anal Math Applicat LAMA, Fac Sci Dhar Mahraz, BP 1796, Atlas Fes, Morocco
[2] Ctr Orientat, Planificat Educ COPE, Ave Zaytoune, Hay Ryad, BP 6222, Rabat, Morocco
[3] Tetouan Univ Abdelmalek Essaadi, Dept Math, Fac Sci, BP 2121, Tetouan, Morocco
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2025年 / 18卷 / 01期
关键词
Nonlinear elliptic problems; entropy solutions; penalization techniques; anisotropic Sobolev space with variable exponents; obstacle problem; RIGHT-HAND SIDE; SOBOLEV SPACES; EQUATIONS; UNIQUENESS;
D O I
10.3934/dcdss.2023034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we shall be concerned with the study of the following quasilinear anisotropic elliptic Dirichlet problems of the type - div a(x, u, backward difference u) = f - div F in omega, (1) where f is an element of L1(omega) and F is an element of pi Ni=1 Lp0i(center dot)(omega), and ai(x, u, xi) are Carathe ' o dory functions from omega x IR x IRN into IR , which satisfy assumptions of growth, coercivity and strict monotonicity. We prove the existence of entropy solutions for the quasilinear elliptic equation associated to the unilateral problem by re-lying on the penalization method, in the anisotropic variable exponent Sobolev spaces. Our approach is also based on the techniques of monotone operators in Banach spaces, the existence of weak solutions, and some approximations methods. The problems of the type (1) are very interesting from the purely mathematical point of view. On the other hand, such equations (1) appear in different contexts, in particular, the mathematical description of motions of the non-newtonien fluids; we quote for instance the electro-rheological fluids; the deformation of membrane constrained by an obstacle, the image processing and other various physical applications.
引用
收藏
页码:93 / 112
页数:20
相关论文
共 50 条
  • [1] Existence of entropy solutions for some anisotropic quasilinear elliptic unilateral problems
    Al-Hawmi M.
    Azroul E.
    Hjiaj H.
    Touzani A.
    Afrika Matematika, 2017, 28 (3-4) : 357 - 378
  • [2] Existence of entropy solutions for degenerate elliptic unilateral problems with variable exponents
    Azroul, E.
    Barbara, A.
    Benboubker, M. B.
    El Haiti, K.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2018, 36 (01): : 79 - 99
  • [3] Existence of periodic solutions for some quasilinear parabolic problems with variable exponents
    El Hachimi A.
    Maatouk S.
    Arabian Journal of Mathematics, 2017, 6 (4) : 263 - 280
  • [4] Existence of entropy solutions for anisotropic quasilinear degenerated elliptic problems with Hardy potential
    Azroul E.
    Bouziani M.
    Barbara A.
    SeMA Journal, 2021, 78 (4) : 475 - 499
  • [5] Multiplicity of solutions for anisotropic quasilinear elliptic equations with variable exponents
    Stancu-Dumitru, Denisa
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2010, 17 (05) : 875 - 889
  • [6] Existence and nonexistence of positive solutions of some elliptic problems with variable exponents
    El-Abed, Amel
    Dammak, Makkia
    Amor Ben Ali, Abir
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (06) : 6440 - 6449
  • [7] Existence Results for an Nonlinear Variable Exponents Anisotropic Elliptic Problems
    Naceri, Mokhtar
    KYUNGPOOK MATHEMATICAL JOURNAL, 2024, 64 (02): : 271 - 286
  • [8] Existence of solutions for anisotropic quasilinear elliptic equations with variable exponent
    Boureanu, Maria-Magdalena
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2010, 1 (03) : 387 - 411
  • [9] EXISTENCE OF RENORMALIZED SOLUTIONS FOR SOME ANISOTROPIC QUASILINEAR ELLIPTIC EQUATIONS
    Ahmedatt, T.
    Ahmed, A.
    Hjiaj, H.
    Touzani, A.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2020, 44 (04): : 617 - 637
  • [10] Existence and a priori estimates of solutions for quasilinear singular elliptic systems with variable exponents
    Moussaoui A.
    Vélin J.
    Journal of Elliptic and Parabolic Equations, 2018, 4 (2) : 417 - 440