Epitaxial substitution of metal iodides for low-temperature growth of two-dimensional metal chalcogenides

被引:46
|
作者
Zhang, Kenan [1 ,2 ,3 ]
She, Yihong [4 ]
Cai, Xiangbin [5 ,6 ]
Zhao, Mei [4 ]
Liu, Zhenjing [2 ,3 ]
Ding, Changchun [7 ]
Zhang, Lijie [4 ]
Zhou, Wei [8 ]
Ma, Jianhua [8 ]
Liu, Hongwei [2 ,3 ]
Li, Lain-Jong [9 ,10 ]
Luo, Zhengtang [2 ,3 ]
Huang, Shaoming [1 ]
机构
[1] Guangdong Univ Technol, Sch Mat & Energy, Guangzhou Key Lab Low Dimens Mat & Energy Storage, Guangzhou, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Chem & Biol Engn, William Mong Inst Nano Sci & Technol, Guangdong Hong Kong Macao Joint Lab Intelligent Mi, Hong Kong, Guangdong, Peoples R China
[3] Hong Kong Univ Sci & Technol, Chinese Natl Engn Res Ctr Tissue Restorat & Recons, Hong Kong Branch, Hong Kong, Peoples R China
[4] Wenzhou Univ, Coll Chem & Mat Engn, Key Lab Carbon Mat Zhejiang Prov, Wenzhou, Peoples R China
[5] Hong Kong Univ Sci & Technol, Dept Phys, Hong Kong, Peoples R China
[6] Hong Kong Univ Sci & Technol, Ctr Quantum Mat, Hong Kong, Peoples R China
[7] Univ Elect Sci & Technol China, Sch Phys, Dept Appl Phys, Chengdu, Peoples R China
[8] Chinese Acad Sci, Shanghai Inst Tech Phys, State Key Lab Infrared Phys, Shanghai, Peoples R China
[9] Univ Hong Kong, Dept Mech Engn, Hong Kong, Peoples R China
[10] Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
INTEGRATION; SUPERCONDUCTIVITY; PROSPECTS; GRAPHENE; VAN;
D O I
10.1038/s41565-023-01326-1
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The integration of various two-dimensional (2D) materials on wafers enables a more-than-Moore approach for enriching the functionalities of devices(1-3). On the other hand, the additive growth of 2D materials to form heterostructures allows construction of materials with unconventional properties. Both may be achieved by materials transfer, but often suffer from mechanical damage or chemical contamination during the transfer. The direct growth of high-quality 2D materials generally requires high temperatures, hampering the additive growth or monolithic incorporation of different 2D materials. Here we report a general approach of growing crystalline 2D layers and their heterostructures at a temperature below 400 degrees C. Metal iodide (MI, where M = In, Cd, Cu, Co, Fe, Pb, Sn and Bi) layers are epitaxially grown on mica, MoS2 or WS2 at a low temperature, and the subsequent low-barrier-energy substitution of iodine with chalcogens enables the conversion to at least 17 different 2D crystalline metal chalcogenides. As an example, the 2D In2S3 grown on MoS2 at 280 & DEG;C exhibits high photoresponsivity comparable with that of the materials grown by conventional high-temperature vapour deposition (similar to 700-1,000 degrees C). Multiple 2D materials have also been sequentially grown on the same wafer, showing a promising solution for the monolithic integration of different high-quality 2D materials.
引用
收藏
页码:448 / +
页数:21
相关论文
共 50 条
  • [21] Two-dimensional NbSSe as anode material for low-temperature sodium-ion batteries
    Zhou, Li-Feng
    Gao, Xuan-Wen
    Du, Tao
    Gong, He
    Liu, Li-Ying
    Luo, Wen-Bin
    CHEMICAL ENGINEERING JOURNAL, 2022, 435
  • [22] Charge Transport Calculation along Two-Dimensional Metal/Semiconductor/Metal Systems
    Stan, Gabriela Ben-Melech
    Dhaka, Kapil
    Toroker, Maytal Caspary
    ISRAEL JOURNAL OF CHEMISTRY, 2020, 60 (8-9) : 888 - 896
  • [23] Two-Dimensional Transition Metal Dichalcogenides and Metal Oxide Hybrids for Gas Sensing
    Lee, Eunji
    Yoon, Young Soo
    Kim, Dong-Joo
    ACS SENSORS, 2018, 3 (10): : 2045 - 2060
  • [24] Large Negative Magnetoresistance Induced by Anionic Solid Solutions in Two-Dimensional Spin-Frustrated Transition Metal Chalcogenides
    Guo, Yuqiao
    Dai, Jun
    Zhao, Jiyin
    Wu, Changzheng
    Li, Dianqi
    Zhang, Lidong
    Ning, Wei
    Tian, Mingliang
    Zeng, Xiao Cheng
    Xie, Yi
    PHYSICAL REVIEW LETTERS, 2014, 113 (15)
  • [25] Theoretical Discovery of a Superconducting Two-Dimensional Metal-Organic Framework
    Zhang, Xiaoming
    Zhou, Yinong
    Cui, Bin
    Zhao, Mingwen
    Liu, Feng
    NANO LETTERS, 2017, 17 (10) : 6166 - 6170
  • [26] Room-Temperature Growth of Square-Millimeter Single-Crystalline Two-Dimensional Metal Halides on Silicon
    Wan, Zuteng
    Chen, Zhiwen
    Shi, Lei
    Zheng, Anqi
    Min, Jin
    Shen, Cong
    Du, Bingfeng
    Guo, Yanhua
    Gao, Xu
    Yin, Jiang
    Ge, Haixiong
    Niu, Shanyuan
    Lu, Haiming
    Yin, Kuibo
    Wu, Di
    Liu, Zhiguo
    Xia, Yidong
    ACS NANO, 2024, 18 (23) : 15096 - 15106
  • [27] Strong correlations in two-dimensional transition metal dichalcogenides
    Ruan, Wei
    Zhang, Yuanbo
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2023, 66 (11)
  • [28] Defect Engineering of Two-Dimensional Transition Metal Dichalcogenides
    Li Jing-Tao
    Ma Yang
    Li Shao-Xian
    He Ye-Ming
    Zhang Yong-Zhe
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2022, 38 (06) : 993 - 1015
  • [29] Thermoelectric properties of two-dimensional transition metal dichalcogenides
    Zhang, Gang
    Zhang, Yong-Wei
    JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (31) : 7684 - 7698
  • [30] Strain regulation of two-dimensional transition metal dichalcogenides
    Zhou, Lu
    Fu, Lei
    CHINESE SCIENCE BULLETIN-CHINESE, 2019, 64 (17): : 1817 - 1831